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Abstract 

Background In the Greater Mekong Subregion (GMS), new vector-control tools are needed to target mosquitoes 
that bite outside during the daytime and night-time to advance malaria elimination.

Methods We conducted systematic literature searches to generate a bionomic dataset of the main malaria vectors 
in the GMS, including human blood index (HBI), parity proportion, sac proportion (proportion with uncontracted 
ovary sacs, indicating the amount of time until they returned to host seeking after oviposition) and the resting period 
duration. We then performed global sensitivity analyses to assess the influence of bionomics and intervention charac-
teristics on vectorial capacity.

Results Our review showed that Anopheles minimus, An. sinensis, An. maculatus and An. sundaicus display oppor-
tunistic blood-feeding behaviour, while An. dirus is more anthropophilic. Multivariate regression analysis indicated 
that environmental, climatic and sampling factors influence the proportion of parous mosquitoes, and resting 
duration varies seasonally. Sensitivity analysis highlighted HBI and parity proportion as the most influential bionomic 
parameters, followed by resting duration. Killing before feeding is always a desirable characteristic across all settings 
in the GMS. Disarming is also a desirable characteristic in settings with a low HBI. Repelling is only an effective strategy 
in settings with a low HBI and low parity proportion. Killing after feeding is only a desirable characteristic if the HBI 
and parity proportions in the setting are high.

Conclusions Although in general adopting tools that kill before feeding would have the largest community-level 
effect on reducing outdoor transmission, other modes of action can be effective. Current tools in development which 
target outdoor biting mosquitoes should be implemented in different settings dependent on their characteristics.

Keywords Malaria, Anopheles, Bionomics, Vectorial capacity, Human blood index, Parity, Sac, Gonotrophic cycle, 
Global sensitivity analysis, Partial rank correlation coefficients, Sobol’s method

Background
Malaria is an infectious disease transmitted to humans 
and other animals through the infectious female Anoph-
eles mosquito. It is caused by Plasmodium parasites, 
namely P.  falciparum, P.  vivax, P.  knowlesi, P.  malariae, 
P. ovale curtisi and P. ovale wallikeri [1]. P. falciparum and 
P. vivax are the main global health threat [2]. P.  falcipa-
rum malaria can cause severe malaria, and if not treated 
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properly, can lead to mortality [3]. The wide use of vector 
control tools, including insecticide-treated nets (ITNs) 
and indoor residual spraying (IRS), along with available 
treatments such as artemisinin-based combination ther-
apy (ACT), have dramatically decreased malaria disease 
burden [4]. However, malaria remains a global health 
challenge, and caused an estimated 247 million cases and 
619,000 deaths worldwide in 2021 [2].

The Greater Mekong Subregion (GMS), located in 
the World Health Organization (WHO) Southeast 
Asia region, consists of six countries, including Cam-
bodia, China (Yunnan province), Lao PDR, Myanmar, 
Thailand and Vietnam. In GMS, P.  vivax, P.  falciparum 
and mixed malaria are the prevailing species of malaria 
[5]. As P.  falciparum cases have decreased, P.  vivax has 
become the main parasite in this region [2]. Among the 
numerous vector species reported in GMS, An.  mini-
mus Theobald 1901 and An.  dirus Peyton and Harrison 
1979 are primary vector species. Additionally, other 
Anopheles species, including An.  sundaicus Rodenwalt 
1926, An.  sinensis Wiedemann 1925 and An.  maculatus 
Theobald 1901 are also able to transmit malaria parasites 
[6].

However, insecticide resistance for pyrethroids (includ-
ing permethrin and deltamethrin) and organochlorines 
(DDT) has been found in multiple malaria vectors in 
the region [7–9], threatening the efficacy of malaria vec-
tor control. Additionally, multi-drug-resistant P.  falcipa-
rum malaria parasites have developed in this region and 
migrated to other countries [10], reducing the effective-
ness of many therapies. Therefore, GMS remains a focal 
point for malaria elimination.

Most of the malaria-endemic regions within the GMS 
are located in the forest, forest fringes and around inter-
national borders [11]. In the forest, mosquitoes have a 
tendency to bite outdoors as well as during the daytime, 
reducing the effect of current vector tools [12]. Therefore, 
towards the elimination of malaria in GMS, new vector 
tools targeting mosquitoes that bite outside, bite during 
the daytime and are resistant to common insecticide are 
urgently needed.

Mathematical modelling plays an essential role in tool 
selection. To assess the influence of model parameters on 
output, sensitivity analysis is commonly used [13]. Over 
the years, vector control tool selection has been sup-
ported by sensitivity analysis of vectorial capacity [14]. 
Vectorial capacity, referring to the capacity of mosquitoes 
to transmit malaria parasites, is defined as the average 
number of potentially infectious bites on all hosts from 
mosquitoes infected by one initial host in one unit of 
time, in the event that every female mosquito becomes 
infectious after biting a malaria-infected host [15]. Vec-
torial capacity helps predict the community-level effect 

of using a new vector tool on Plasmodium transmission 
[16–18].

Several bionomic parameters are included in differ-
ent mathematical models for estimating vectorial capac-
ity [14, 19, 20], primarily consisting of daily survival and 
mortality probabilities, the ratio of mosquitoes compared 
with humans and the biting rate [21]. In our analysis we 
consider a vectorial capacity model derived from a dis-
crete-time entomological model of the Anopheles feed-
ing cycle, in Chitnis et al. [22] and Briët et al. [16]. This 
model was chosen since it looks at the effects of inter-
ventions at different stages during each mosquito feed-
ing cycle. The parameter values of the model are derived 
from several measurable bionomics parameters: human 
blood index, parity proportion, sac proportion, resting 
period duration and other standard parameters such as 
the probability that a mosquito survives or dies at each 
stage of the feeding cycle. Human blood index (HBI), 
the proportion of mosquitoes that have fed on humans 
out of all blood-feeding mosquitoes analysed, informs 
the host preference of mosquitoes and the availability of 
local animals to mosquitoes. In addition, HBI and mos-
quito feeding frequency determine the human-biting 
habit of mosquitoes. Parity proportion, often referred to 
as the parity rate, is the proportion of mosquitoes that 
have previously laid eggs. This relates the mortality of 
mosquitoes, the life span of mosquitoes, adult mosquito 
emergence rate and the duration of a gonotrophic cycle 
to each other. Therefore, variations in the parity propor-
tion reflect many aspects of mosquito population dynam-
ics [23]. Sac proportion, often referred to as the sac rate, 
is the proportion of mosquitoes with uncontracted ovary 
sacs, indicating they returned to host-seeking within 
a day of oviposition [24]. Along with the resting period 
duration of a mosquito, which is the duration required 
for blood digestion and ovaries maturation, the sac pro-
portion can be used to estimate the average duration of 
the mosquito feeding cycle [22, 24]. Here, we assume the 
time to develop eggs is much longer than the time to find 
an oviposition site, and therefore mosquitoes leave their 
resting location and oviposit the same day.

Systemic literature reviews can help to parameterize 
mathematical models. A global bionomics database for 
the main malaria vectors was established in 2010, con-
taining field data from 1985 to 2010 [25]. However, the 
parameters may vary after a decade. In addition, this 
database did not collect data on sac proportion. More 
recently, Orsborne et  al. [26] performed a systematic 
review of the HBI for three major African malaria vec-
tors. To identify the desirable characteristics of new mos-
quito control tools in the GMS, an updated dataset of the 
local mosquito entomological parameters is needed.
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In this paper, we generate a dataset of these mosquito-
related parameters from a systematic search. Then we 
conduct global sensitivity analysis on the Chitnis et  al. 
[22] model to understand how these parameters affect 
the ability of mosquitoes to transmit malaria. Further-
more, sensitivity analysis was also used to identify key 
performance properties of vector control tools depend-
ing on the bionomics of the local mosquito populations 
in the GMS.

Methods
Systematic literature search

Search strategy
The search terms (Table  1) and inclusion and exclusion 
criteria (Table 2) were utilised for the systematic search. 
Original studies reporting the HBI, parity proportion, 
sac proportion or resting period duration of An.  dirus 
complex, An.  minimus complex, An.  sinensis complex, 
An.  sundaicus complex or An.  maculatus group were 
included. The Maculatus group, formerly known as a 
species complex, is currently considered as supercom-
plexes with subordinate complexes [27]. The publications 

without the bionomics of at least one of these five species 
complex and repeat reports were excluded.

Data extraction
Bionomic data were extracted from the eligible papers. 
Data describing other variables that could influence the 
bionomics were also collected, including species (com-
plex), season (e.g. rainy, dry), trapping location (e.g. 
indoor, outdoor) and trapping method. For parity pro-
portion, the concurrent use of insecticides for control 
purposes was also recorded.

The online resources were searched for variables 
not described in the article, including season and cur-
rent usage of the vector control tool. If the season was 
not given, the rainy and dry seasons were calculated by 
searching for the regular rainy and dry seasons in the par-
ticular area [28]. Studies containing two seasons would 
be classified into the both category. Additionally, extreme 
situations such as exceptionally low or no rainfall in the 
rainy season would be classified into the both category. 
References in eligible articles, World Health Organiza-
tion malaria reports [29, 30] and relative vector control 

Table 1 Search terms used for the systematic searches

Parameter Pubmed search term

Human blood index “Anopheles” AND (“minimus” OR “dirus” OR “macu-
latus” OR “sinensis” OR “sundaicus”) AND (“Human 
blood index” OR “HBI” OR “host preference” 
OR “trophic preference” OR “blood meal prefer-
ence” OR “blood host preference” OR “blood meal” 
OR “blood meal analysis” OR “blood-meal analysis” 
OR “blood meal source” OR “host blood” OR “host 
blood meal” OR “blood meal identification” 
OR “anthropophilic index” OR “human blood fed”)

Parity proportion, sac proportion and resting period duration “Anopheles” AND (“minimus” OR “dirus” OR “macu-
latus” OR “sinensis” OR “sundaicus”) AND (“parity” 
OR “parous” OR “multiparous” OR “bionomics” 
OR “gonotrophic cycle” OR “oocyst” OR “entomo-
logical” OR “entomologic” OR “vectorial capacity” 
OR “ecology” OR “ecological” OR “survival” OR “ovi-
position” OR “dissection” OR “mortality” OR “sporo-
zoite” OR “sac”)

Table 2 Inclusion and exclusion criteria for the systematic searches

Inclusion criteria Exclusion criteria

Reported human blood index (using blood meal analysis), parity 
proportion, sac proportion or resting period duration

Reported human blood index using other measurements (e.g. anthropophilic 
index) or without reporting human blood index, parity proportion, sac proportion 
or resting period duration

Reported bionomics for An. dirus complex, An. minimus complex, 
An. sinensis, An. sundaicus complex and An. maculatus group

Reported bionomics of other mosquito species or did not specify mosquito species

Original report Review or repeat report

All languages
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publications [31–34] were read to assess the usage status 
of vector control.

Geo-position information including country, study 
location, area type, latitude and longitude was recorded 
for mapping the distribution of data points. In the 
absence of coordinates from the publication, online gaz-
etteers such as Google Maps and Google Earth were used 
to determine the coordinate for the given study site, con-
sistent with the Malaria Atlas Project MAP database [28].

Statistical analysis
Descriptive statistics
For HBI, parity proportion and sac proportion, the mean 
and the 95% confidence interval (CI) were calculated, 
weighted by the total number of mosquitoes samples 
analysed. Data points with less than ten mosquito sam-
ples were excluded. For the resting period duration, the 
range is given. The data points were mapped using lati-
tude and longitude coordinates referenced to the World 
Geodetic Reference System 1984 (WGS 84) ellipsoid to 
see the geographical distribution [35, 36].

Inferential statistics
For the generated bionomic datasets that contain a sam-
ple size of five or more for each species complex, the dif-
ference among species complexes was compared using 
a Kruskal–Wallis test. Moreover, the post  hoc Dunn’s 
test was conducted for multiple pairwise compari-
sons. Here, Bonferroni adjusted P-values were used to 
account for multiple statistical tests being performed on 
a single dataset. A P-value less than 0.05 was considered 
significant.

Univariate and multivariate logistic regressions were 
carried out for the dependent variable: parity proportion, 
weighted by the total number of analysed mosquitoes. 
The independent variables were selected on the basis of 
factors known to affect parity proportion: species (com-
plex), trapping location, trapping method, vector control 
tool usage status, season, climate zone and land use class.

Geographical variables, including climate zone and 
land use class, were extracted for the coordinates of 
each data point. The Koppen–Geiger climate classifica-
tion map for the present day (1980–2016) [37] was used 
to categorize the climate into three types: tropical, tem-
perate and cold. Additionally, the Terra and Aqua com-
bined Moderate Resolution Imaging Spectroradiometer 
(MODIS) Land Cover Type (MCD12Q1) data product 
(2001–2019) [38] was used to categorize the land cover 
type following Food and Agriculture Organization Land 
Cover Classification System land use class (LCCS2). 
The land cover type was grouped into five categories: 
forests (open forests and dense forests), croplands, for-
est/cropland mosaics, urban and build-up lands and 

nature herbaceous. In addition, considering the impact 
of urbanization and deforestation on land use type, data 
points before 1990 were reviewed and updated.

Statistical analysis was performed using R version 4.1.2 
[39] and RStudio [40].

Modelling vectorial capacity
Entomology model
Our model framework uses a discrete-time entomo-
logical model of the Anopheles feeding cycle [22]. The 
feeding cycle in this model consists of five states: host-
seeking, host-encountering, biting, resting and ovipos-
iting (Fig.  1). Vectorial capacity was previously derived 
from this entomological model [22]. We used the vecto-
rial capacity of mosquitoes to measure the potential for 
Plasmodium transmission, which is affected by local bio-
nomics and vector tools. To compare the impact of the 
different bionomic parameters and intervention param-
eters, we used the relative change of vectorial capacity 
versus baseline vectorial capacity as our model output, 
since it is not affected by the environmental larval carry-
ing capacity [17]. Baseline vectorial capacity was calcu-
lated using the default value of the parameters in Table 3.

Intervention model
To simulate the impact of the intervention characteris-
tics, we integrated four modes of action parameters as 
possible effects of the novel vector tool into this model: 
the repelling effect, preprandial killing effect (killing 
before blood-feeding), disarming effect (biting inhibited 
for the duration of the feeding cycle remaining) and post-
prandial killing effect (killing after blood-feeding). Vector 
control tools which target host-seeking mosquitoes usu-
ally have one or more of these properties. For example, 
untreated bed nets repel mosquitoes and insecticide-
treated bed nets aim to kill before feeding, however, as 
nets age or mosquitoes develop resistance, more mos-
quitoes may be disarmed or repelled instead [41]. Novel 
interventions, such as transfluthrin emulators (often 
called spatial repellents), kill, disarm and repel mosqui-
toes, depending on the transfluthrin concentration that 
the mosquito is exposed to [18, 42].

We specified three types of real hosts: unprotected 
malaria hosts (hosts without the tool), protected malaria 
host (hosts with the tool) and non-malaria host (such as 
cattle). A detailed description of model parameters and 
equations can be found in the Additional file 1. The num-
ber of protected hosts is given by multiplying the total 
number of malaria hosts with the intervention coverage 
level. Repelling, disarming and preprandial killing effect 
could contribute to the reduction of biting. The reduc-
tion in biting effect was incorporated into the model by 
decreasing the host availability rate of the protected host. 
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Fig. 1 Anopheles feeding cycle model from [18]. Repelling reduces the host-encountering rate for protected hosts. Preprandial killing increases 
death before feeding (no parasite transmission). Disarmed mosquitoes do not bite any host for the remaining duration of the feeding cycle. 
Postprandial killing increases death after feeding (possible parasite transmission)

Table 3 Parameter definition, default value and range of vectorial capacity model and intervention model. For the bionomic 
parameters the default value is the weighted mean across species and the range is the minimum and maximum of the weighted 
range across all the species considered

Symbol Parameter definition Default value Range Refs.

Bionomic parameters

 χ Human blood index 0.5 (0.01, 1)

 M Parity proportion 0.6 (0.39, 0.79)

 A0 Sac proportion 0.5 (0.16, 0.88)

 τ Resting period duration 3 days (2, 6)

Standard parameters

 θd Maximum time a mosquito unsuccessfully searches for a blood meal per day 0.33 days [16]

 θs Duration of the extrinsic incubation period 10 days [16]

 PB Probability that a mosquito bites after encountering a host 0.95 [16]

 PC Probability that a mosquito finds a resting place after biting 0.95 [16]

 PD Probability that a mosquito survives the resting phase 0.99 [16]

 PE Probability that a mosquito lays eggs and returns to host-seeking 0.88 [16]

 N Total number of hosts 1000

Intervention parameters

 βr Repelling effect (0, 0.6) [18]

 βd Disarming effect (0, 0.6) [18]

 βm Preprandial killing effect (0, 0.6) [18]

 ξ Postprandial killing effect (0, 0.4) [18]
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The postprandial killing effect was modelled by reduc-
ing the probability of mosquitoes finding a resting place 
after feeding a protected host [17]. To include prepran-
dial killing and disarming we include dummy hosts (with 
one dummy host per protected host). Dummy hosts are 
not real hosts, including these in the model allows for 
these mosquitoes to be removed from the system for the 
remainder of the feeding cycle. Vectors which interact 
with preprandial killing dummy hosts are killed. Disarm-
ing dummy hosts simulate the period where the mos-
quito remains disarmed before returning to host-seeking.

Sensitivity analysis
Sensitivity analysis of the entomology model
Two global sensitivity analyses were performed to test 
how sensitive the model output is to the bionomic param-
eters. Using the relative change of vectorial capacity as 
our model output, we evaluated four bionomic parame-
ters in the sensitivity analysis: human blood index, parity 
proportion, sac proportion and resting period duration. 
An overview of model parameters is presented in Table 3.

To explore the relationship between the parameters 
and output, we used a sampling-based sensitivity analy-
sis method, Latin hypercube sampling – Partial rank cor-
relation coefficients (LHS-PRCC). This approach can be 
applied in the case of nonlinear but monotonic relation-
ships between model output and each model parameter 
[43]. Firstly, a Monte Carlo approach, Latin hypercube 
sampling (LHS), was used to generate samples. A total 
of 500 random parameter sets were generated from 
uniform distributions on the basis of the ranges listed 
in Table  3. Secondly, for each parameter set, the model 
output was obtained. Partial rank correlation coefficients 
(PRCC) between each parameter and output were then 
calculated. Moreover, 50 replicated LHS-PRCC were per-
formed to compute the means and 95% confidence inter-
vals of the PRCC. Significance tests were conducted to 
assess whether a PRCC significantly differed from zero at 
a 95% confidence level, considering the Bonferroni mul-
tiple test correction [43]. A positive PRCC indicates the 
positive correlation between the input parameter and the 
output, while a negative PRCC indicates the negative cor-
relation between the input parameter and model output. 
PRCC close to 1 or −1 means the parameter is very influ-
ential to the model output [13].

To evaluate the effect of each parameter and the inter-
actions of the parameters, we used a variance-based 
method, Sobol’s method [44]. Firstly, Sobol’s quasi-ran-
dom numbers [45, 46] were adopted to generate samples. 
A total of 6000 parameter sets were generated from uni-
form distributions on the basis of each parameter range. 
For each parameter set, the output was calculated. Sec-
ondly, the first order Sobol’s indices, which measure the 

main effect of each parameter, were derived with the 
Saltelli estimator [47]. The total order Sobol’s indices, 
which measure the total effect of each parameter, were 
assessed with the Jansen estimators [48], showing good 
accuracy and efficiency [49]. Furthermore, 50 bootstrap 
replicas were used to generate the 95% confidence inter-
vals. Lastly, the first order and total order Sobol’s indices 
of a dummy parameter were computed to determine the 
error from numerical approximation and identify the sig-
nificant parameters [49].

Sensitivity analysis of the intervention model
To understand how sensitive the relative reduction 
of vectorial capacity was to the intervention param-
eters in different bionomic settings, we performed two 
global sensitivity analyses. We evaluated four interven-
tion parameters in the sensitivity analysis: the repelling 
effect, preprandial killing effect, disarming effect and 
postprandial killing effect. The intervention parameters 
were derived from semi-field or field experiments, as pre-
sented in Table 3.

LHS-PRCC and Sobol’s method were conducted, con-
sidering three intervention coverage levels: 10%, 30% and 
50%. When examining the sensitivity index in the vari-
ation range of one bionomic parameter, the other bio-
nomic parameters were fixed to the mean value.

Sensitivity analysis was performed using R version 4.1.0 
[39] and RStudio [40]. For LHS-PRCC, Latin hypercube 
samples were obtained with the LHS package [50], and 
the PRCC results were obtained using the sensitivity 
package [51]. The Sobol’s quasi-random numbers and the 
Sobol’s indices were obtained with the sensobol package 
[49].

Results
Data used in the systematic review, from eligible studies, 
are provided in the Additional file 2: data file.

Human blood index (HBI)
A total of 128 publications were identified from databases 
and citation searches. After removing duplicate records, 
90 abstracts of studies were screened, and 46 studies 
were considered relevant and assessed for eligibility fol-
lowing the inclusion and exclusion criteria. As a result, 
39 studies with 102 data points were included in our final 
review (Fig. 2).

The distribution for the HBI of these five species com-
plexes can be compared in Fig. 3A. The weighted mean, 
range and 95% confidence quantile are provided in 
Table  4. Kruskal–Wallis test revealed a statistically sig-
nificant difference in HBI between these species com-
plexes (P  <  0.01, effect size, 0.17). Dunn’s test indicated 
that An.  dirus complex is significantly different from 
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An.  sinensis and Maculatus group; An.  minimus com-
plex is significantly different from An.  sinensis (Bonfer-
roni adjusted P-value  <  0.05). An.  dirus complex has a 
higher average HBI, while the average HBI of An. sinensis 

and the Maculatus group are lower. The HBI has a wide 
range and 95% confidence interval under different condi-
tions. The geographical distribution of the data points is 
displayed in Fig. 3B. In addition, the distribution map for 

Fig. 2 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of HBI systematic search

Fig. 3 Overview of HBI A Distribution of HBI of different species complexes B Geographic distribution of study sites of HBI data points
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each species complex can be found in Additional file  3: 
Fig. S1.

Generally, host selection by mosquitoes can either be 
fixed (where host selection does not depend on the avail-
ability of the host) or opportunistic (where host selection 
depends on the availability of the host). For opportunistic 
mosquito species, the HBI can differ within a small geo-
graphical region, depending on the host availability or 
host accessibility [52]. Our review shows that An. mini-
mus complex, An.  sinensis, An.  maculatus group and 
An.  sundaicus complex display an opportunistic blood-
feeding behaviour [25, 53–57], which means they are 
either anthropophilic or zoophilic, depending upon the 
availability of a local host. However, An. dirus complex is 
more anthropophilic [25, 55, 58].

Parity proportion
On the basis of database searches and citation searches, 
787 publications were identified. After eliminating dupli-
cate records, abstracts from 509 studies were screened. 
The inclusion and exclusion criteria were then applied 
and 118 studies were found to be relevant. Finally, 83 
studies comprising 266 data points were included in our 
final review (Fig. 4).

Figure 5A shows the distribution of parity rates among 
these five species complexes. The weighted mean, range 
and 95% confidence quantile are provided in Table 4. The 

Kruskal–Wallis test revealed a statistically significant dif-
ference in parity proportion between these species com-
plexes, while the effect size was small (P  <  0.05, effect 
size, 0.04). However, Dunn’s test for multiply pairwise 
comparison did not indicate a statistically significant dif-
ference between groups after adjusting the P-value with 
Bonferroni correction. An. dirus complex has the highest 
average parity rate, while the average parity proportion of 
An.  maculatus group is the lowest. The 95% confidence 
interval of the parity proportion among these species 
complexes is 0.39–0.79 under different conditions.

Figure  5B depicts the geographic distribution of the 
data points. In addition, the detailed distribution map for 
each species complex is provided in Additional file 3: Fig. 
S2.

The results of the univariate and multivariate logis-
tic regression analyses are shown in Additional file  3: 
Table S3. Multivariate analysis indicated that using insec-
ticide decreases the parity proportion. A lower parity 
proportion was also be found in the indoor collection 
versus other locations (outdoor, animal shelter, com-
bined). The parity proportion using the resting collection 
was not significantly different from the whole night bit-
ing collection. In contrast, the half-night biting collection 
displayed a lower parity proportion, and the light trap 
collection indicated a higher parity proportion. Herba-
ceous habitat had a lower parity proportion compared 

Fig. 4 PRISMA flow diagram of parity proportion systematic search
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with the forest, croplands and forest/cropland mosaics. 
The effect of climate zone on parity proportion differed 
for different species complex. An.  dirus complex had a 
higher parity proportion in tropical regions compared 
with temperate regions, with weighted means of 58% 
and 51%, respectively. However, for An.  minimus com-
plex and An. sinensis, the parity proportion was higher in 
temperate regions than tropical regions, with weighted 
means of 66% and 59% for An. minimus and 53% and 27% 
for An.  sinensis, respectively. For An.  sinensis, the only 
species found in the cold region, the parity proportion 
in the cold region was higher than in the temperate and 
tropical regions, with a weighted mean of 61%.

Sac proportion
During database and citation searches, four publications 
were found containing data on the proportion of mosqui-
toes with uncontracted ovary sacs, which can be used to 
estimate the time until mosquitoes return to host-seeking 
after laying eggs. After excluding one paper of other spe-
cies, three papers [24, 59, 60] containing 22 data points 
were included in our review.

Two studies explored the sac proportion of An.  sin-
ensis collected by human/cow bait during the evening, 
midnight and before dawn. High sac proportions in 
these two papers indicated that most of the mosquitoes 
return to blood-seeking stage during that night after 
oviposition. However, the sac stage composition after 
midnight differs from these two papers. One contains 
more long sac types (stage AB 91.4%, stage CD 2.9%) 

[60], while the other one contains more noticeably con-
tracted sac types (stage AB 35.4%, stage CD 43.1%) [59]. 
In the Cambodian study, sac proportion was 0.2 [24], 
which is much lower than results reported from China 
[59, 60].

The distribution of sac proportions among these five 
species complexes is shown in Fig.  6. The descriptive 

Fig. 5 Overview of parity proportion A Distribution of parity proportion of different species complexes B Geographic distribution of study sites 
of parity proportion data points

Fig. 6 Distribution of sac proportion of different species complexes
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statistical information of sac proportion can be found 
in Table 4.

Due to having less than five samples in each group of 
species complex, we did not conduct a Kruskal–Wallis 
test.

Resting period duration
We found 12 publications containing 18 data points of 
resting period duration for three species complexes: 
An.  minimus complex, An.  sinensis and An.  sundaicus 
complex. The parameter ranges are listed in Table 4.

For An.  minimus complex, field or laboratory obser-
vation indicated a 2–−2.5-day resting duration during 
the rainy season in India, Thailand and China [61–64]. 
Meanwhile, a 3–6-day duration during the dry, cool sea-
son was observed in Thailand and India [61, 63]. A study 
from Bangladesh illustrated a 2-day gonotrophic cycle 
from the evidence of 52% half gravid and 48% gravid 
mosquitoes from a 1-year collection [65]. For An. sinen-
sis, the range of duration is 2–4 days in the rainy season 
in China or South Korea, measured by collecting the fully 
fed mosquito and observing until oviposition in the labo-
ratory or natural conditions [60, 66–68]. The experiment 
with ambient temperature and relative humidity detected 

a maximum of 2.7 days in 23–25◦ C, 89% relative humid-
ity setting, and a minimum of 1.8 days in 31–35◦ C, 88–−
89.5% relative humidity setting [69]. The resting period 
duration of An.  maculatus complex in the rainy season 
is 2–3 days in Malaysia, measured by capture–recapture 
studies [70, 71].

Sensitivity analysis
The sensitivity analysis results obtained from LHS-PRCC 
and Sobol’s method can be compared in Fig.  7A and 
Fig.  7B. LHS-PRCC and Sobol’s method revealed that 
the relative change of vectorial capacity was sensitive to 
all these bionomic parameters. It was most sensitive to 
HBI and parity proportion, while sac proportion was the 
least sensitive parameter. Further analysis of Sobol’s sec-
ond order indices are listed in Additional file 3: Table S2, 
which indicates that larger values of vectorial capacity 
are associated with larger values of both HBI and parity 
proportion.

The variation in the sensitivity index of the inter-
vention parameters under different bionomic settings 
is shown in Fig.  8,  9 and 10. LHS-PRCC and Sobol’s 
total order index illustrated that, in a low HBI setting, a 
similar impact could be observed between preprandial 

Table 4 Weighted mean, range and 95% confidence interval (CI) for each species complex and entomological parameter

*Species complexes sharing a common letter were not significantly different (Kruskal–Wallis test and Dunn’s post hoc test). † Only data points with more than ten 
mosquito samples were included

Species Number of sites† Weighted mean† Range† Weighted 95% CI†

Human blood index (HBI)

 An. dirus (a)* 6 0.87 (0.06, 1) (0.06, 1)

 An. minimus (ab) 17 0.61 (0, 0.98) (0.05, 0.98)

 An. sinensis (c) 51 0.10 (0, 0.98) (0.01, 0.98)

 An. sundaicus (a) 5 0.34 (0, 0.64) (0, 0.59)

 Maculatus group (b) 9 0.09 (0, 0.83) (0, 0.83)

Parity proportion

 An. dirus (a) 45 0.64 (0.20, 0.80) (0.43, 0.79)

 An. minimus (a) 68 0.60 (0.39, 0.93) (0.48, 0.72)

 An. sinensis (a) 48 0.57 (0.11, 0.90) (0.41, 0.73)

 An. sundaicus (a) 11 0.59 (0.29, 0.75) (0.46, 0.74)

 Maculatus group (a) 41 0.51 (0.16, 0.78) (0.39, 0.78)

Sac proportion

 An. dirus 2 0.33 (0.27, 0.34) (0.27, 0.34)

 An. minimus 3 0.60 (0.60, 0.70) (0.60, 0.60)

 An. sinensis 3 0.82 (0.16, 0.88) (0.16, 0.88)

 An. sundaicus 1 0.32 (0.32, 0.32) (0.32, 0.32)

 Maculatus group 3 0.50 (0.43, 0.52) (0.43, 0.52)

Resting period duration

 An. minimus 8 (2, 6)

 An. sinensis 4 (1.8, 4.3)

 Maculatus group 4 (2.3, 2.4)
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killing, disarming and repelling effect, and all of them 
were more influential than the postprandial killing 
effect. However, preprandial killing had the most sub-
stantial impact in a high HBI/parity proportion set-
ting. Comparing three different levels of coverage, we 
observed that disarming and repelling were more influ-
ential than the postprandial killing effect under high 
coverage level. In contrast, postprandial killing was 
more sensitive than repelling in low coverage settings 
when HBI/parity proportions were high. It is also worth 

noting that limited variation was observed under differ-
ent sac proportion settings.

Discussion
In this study, we performed a systematic literature search 
for key bionomics parameters to understand the life 
history characteristics of the main malaria vectors in 
the GMS. After generating a bionomics dataset of local 
species, we conducted global sensitivity analyses. This 
allowed us to identify the most influential mosquito 

Fig. 7 Global sensitivity analysis results for the bionomic parameters of the vectorial capacity model. A PRCC index. The area between the dashed 
lines represents PRCC values that are not statistically significant. B Sobol’s index. The area below the dashed lines represents Sobol’s indices that are 
not statistically significant

Fig. 8 A The variation in sensitivity of the intervention parameters in different human blood index (HBI) settings under three intervention coverage 
levels, reported by PRCC. The area between the dashed lines represents PRCC values that are not statistically significant. B The variation in sensitivity 
of the intervention parameters for different HBI settings, reported by Sobol’s total index
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bionomics, as well as the most effective modes of action 
of potential vector control tools, for reducing vectorial 
capacity.

Our systematic review provides detailed information 
regarding the bionomics of major malaria vector spe-
cies in GMS. We found that bionomics differ from area 

Fig. 9 A The variation in sensitivity of the intervention parameters in different parity proportion settings under three intervention coverage levels, 
reported by PRCC. The area between the dashed lines represents PRCC values that are not statistically significant. B The variation in sensitivity 
of the intervention parameters for different HBI settings, reported by Sobol’s total index

Fig. 10 A The variation in sensitivity of the intervention parameters in different sac proportion settings under three intervention coverage levels, 
reported by PRCC. The area between the dashed lines represents PRCC values that are not statistically significant. B The variation in sensitivity 
of the intervention parameters for different HBI settings, reported by Sobol’s total index



Page 13 of 16Wang et al. Parasites & Vectors          (2024) 17:162  

to area, and several vital factors influence these bionom-
ics. It is possible that these factors influence the species 
of the complex present. Previous studies demonstrated 
that the HBI could be affected by local human/animal 
ratio, host availability (e.g. using IRS, personal protec-
tion), trapping location (e.g. indoor or outdoor), trapping 
method, seasonality and homogeneity of mosquitoes 
[53, 54, 56, 72–75]. Several studies have shown that par-
ity proportion is affected by geographical factors (land 
use type), climate and environmental factors (rainfall, 
temperature) and sampling factors (method, timing and 
location) [60, 68, 73, 74, 76–83]. Environmental fac-
tors also affect the resting period duration. The resting 
period duration increases when temperature or humidity 
decreases [69, 84–86], or when the mosquito activity is 
curtailed due to the rain [71]. Despite this, little informa-
tion is available regarding sac proportion. Future investi-
gations are needed to fill these knowledge gaps. A better 
understanding of these bionomics and vectorial capacity 
could support the development of more effective malaria 
control strategies in the GMS.

Compared with other vectorial capacity models derived 
from the Garrett–Jones equation, the Chitnis et  al. [22] 
model can better integrate vector control intervention 
targeting different stages of the mosquito feeding cycle. 
It also considers the variation in the duration of the host-
seeking stage and transmission delay caused by the rest-
ing period duration. Furthermore, using relative vectorial 
capacity as model output allowed us to compare the 
intervention effects in different environments. However, 
additional uncertainty arises due to the simple model 
assumptions: it assumes a constant mortality rate dur-
ing each cycle and assumes mosquitoes feed only once 
each cycle. Previous vectorial capacity modelling studies 
have been summarised by Catano-Lopez et al. [21]. These 
studies have taken into account some of these factors: 
age-dependent vector mortality [87–89] or temperature 
related transmission parameters [90–93].

Another possible area of future modelling research 
would be to incorporate zoonotic malaria. According to 
a recent report, zoonotic malaria infections, caused by 
P. knowlesi and other simian Plasmodium species, mainly 
transmitted by vectors in forests and forest fringes, are 
on the rise in many Southeast Asian countries, threaten-
ing malaria elimination [94, 95]. To develop a full picture 
of malaria transmission in GMS, additional studies are 
needed.

Sensitivity analysis of vectorial capacity or reproductive 
number helps us to identify the most influential param-
eter regarding vector control. Most studies used differ-
entiation-based local sensitivity analysis [96], assessing 
the parameter sensitivity around one particular point 
in the model input space [14, 97–99]. Considering the 

uncertainty regarding parameter values, we used global 
sensitivity analysis, which allowed us to explore a multi-
dimensional input space and take into account the non-
linearities and interactions in models [47]. Meanwhile, 
most research investigated the most influential biologi-
cal parameter on the vectorial capacity or reproductive 
number, such as mosquito biting rate [97, 98], mosquito 
mortality[14] or mosquito–human contact rate [99]. 
However, some interventions could target more than one 
parameter, and different interventions could target the 
same parameter. With our modelling framework, we can 
quantitatively compare the intervention parameters and 
identify the most significant ones in different settings.

Malaria control programmes tend to take a one-fits-all 
approach [100, 101]. However, we show here that in dif-
ferent bionomic settings, different tools may be appropri-
ate. In general, preprandial killing and disarming have a 
higher community-level effect on transmission block-
ing than repelling, since repelling could increase the risk 
for the non-intervention population, especially under 
low coverage levels. Previous research has shown that 
as some tools age, they lose preprandial killing efficacy, 
however, these mosquitoes are disarmed instead [18]. 
Our results suggest that in areas with low HBI, vector 
tools that focus on disarming, repelling or killing mos-
quitoes before they bite have a similar impact, suggest-
ing that tools switching from preprandial mortality to 
disarming over time may maintain high impact. However, 
as with HBI and parity proportion, the impact of disarm-
ing and repelling decrease, especially at low intervention 
coverage, and therefore, programmes should focus on 
replacing tools more frequently to ensure mosquitoes 
are killed before they feed. For locations where the main 
vectors have fixed blood-feeding behaviour, we would 
expect similar HBIs, and therefore similar tools can be 
used. However, for locations with opportunistic vectors, 
a greater understanding of the local HBI (due to the avail-
ability of other non-human hosts) is needed to decide the 
modes of action required for efficient tools. Character-
istics of tools explored in this study may come at differ-
ent price points, with larger dosages of insecticide often 
associated with more preprandial killing [42]. This study 
highlights that these more expensive products may not 
be required in some bionomic settings.

Conclusions
This study reviewed in detail the available information 
on HBI, parity proportion, sac proportion and the resting 
period duration in the GMS. Using these broad ranges of 
bionomic parameters, we performed a global sensitivity 
analysis of the vectorial capacity model.

Our intervention model, based on [17, 97], offered 
a framework to assess the community-level impact 
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of different characteristics of vector control tools. 
Although preprandial killing is always the most desir-
able characteristic, we show that in different bionomic 
settings other modes of action may also be effective, 
potentially prolonging the time before a tool needs to 
be replaced. This could lead to more cost-effective, tar-
geted malaria control.
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