
Rojas et al. Parasites & Vectors          (2024) 17:127  
https://doi.org/10.1186/s13071-024-06226-4

REVIEW

Wildlife parasitology: sample collection 
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Abstract 

Wild terrestrial carnivores play a crucial role as reservoir, maintenance, and spillover hosts for a wide parasite variety. 
They may harbor, shed, and transmit zoonotic parasites and parasites of veterinary importance for domestic hosts. 
Although wild carnivores are globally distributed and comprise many different species, some living in close proximity 
to human settlements, only a few studies have investigated parasites of wild terrestrial carnivores using non-specific 
techniques. Access to samples of wild carnivores may be challenging as some species are protected, and others are 
secretive, possibly explaining the data paucity. Considering the importance of wild carnivores’ health and ecological 
role, combined with the lack of specific diagnostic methodologies, this review aims to offer an overview of the diag-
nostic methods for parasite investigation in wild terrestrial carnivores, providing the precise techniques for collec-
tion and analysis of fecal, blood, and tissue samples, the environmental impact on said samples, and the limitations 
researchers currently face in analyzing samples of wild terrestrial carnivores. In addition, this paper offers some crucial 
information on how different environmental factors affect parasite detection postmortem and how insects can be 
used to estimate the time of death with a specific highlight on insect larvae. The paper contains a literature review 
of available procedures and emphasizes the need for diagnostic method standardization in wild terrestrial carnivores.
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Background
Wild animals play a crucial role as reservoir, mainte-
nance, and spillover hosts for a wide parasite variety 
(Fig. 1). They may harbor, shed, and transmit zoonotic 
parasites and parasites that are of veterinary impor-
tance for domestic hosts [1–3]. Environmental changes 
have led to the territorial expansion of some wild 

animal species, and their urbanization is increasing 
globally [4–6]. Other species are less adaptable to these 
changes, and thus, their numbers have declined [7, 8]. 
Consequently, a change in contact between wildlife, 
humans, and domestic animals has been observed in 
the last two decades, with increased contact in certain 
areas [9, 10].

Fig. 1  Carnivore families and their distribution. Phylogenetic representation of carnivore families based on previous analysis (Agnarsson et al. 2010; 
Hassanin et al. 2021), the approximate number of species per family, their terrestrial or aquatic habitat, and continent in which they are distributed. 
This figure was created using Biorender.com
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Bridging infections between wild and domestic animals 
are becoming more frequent. Together with the move-
ment and migration of wild animals, they have contrib-
uted and facilitated the spread of some parasites to new 
geographical areas [11–13]. The situation becomes more 
dire through the illegal trade of wild animals and the 
introduction of invasive wild mammals to regions where 
they contribute to zoonotic parasite transmission [14–
16]. Such spillover events were observed for the lung-
worms Angiostrongylus vasorum, whose geographical 
expansion directly correlates to its main canid host, the 
red fox (Vulpes vulpes) [12] and Crenosoma vulpis,, which 
was recently reported in northern Africa and associated 
with the expansion of red foxes in the African continent 
[17]. In addition, some parasites of veterinary importance 
have been reported in wild animals in new geographi-
cal areas, mainly in carnivore hosts, presenting a risk of 
spread or spillover to domestic species [18–21]. Likewise, 
some non-native animal species, such as raccoons (Pro-
cyon lotor) in Europe, are responsible for the introduc-
tion of foreign parasites, such as the American ascarid 
Baylisascaris procyonis, now a new zoonotic nematode 
in Europe [22]. Although wild carnivores are globally dis-
tributed and comprise a high number of different groups 
living close to human settlements (Fig.  1), only a few 
studies have investigated parasites of wild terrestrial car-
nivores using comprehensive procedures [23, 24]. Access 
to samples of wild carnivores may be challenging as some 
species are protected and endangered, and others are 
elusive and prefer to stay hidden, possibly explaining the 
data paucity. So far, methods such as macroscopic exami-
nation, serological tests, and molecular tools have been 
employed for parasite detection in organs, tissues, and 
body fluids from wild hosts [25].

Considering the significance of wild terrestrial carni-
vore species as spreaders and reservoir hosts for parasites 
of veterinary and public health importance, combined 
with the lack of precise diagnostic methods, this review 
aims to offer an overview of the diagnostic approaches 
for parasite investigation in these hosts. The paper 
reviews specific techniques for the collection, preserva-
tion, and analysis of fecal, blood, and tissue samples, the 
environmental impact on said samples, and the limita-
tions researchers currently face in analyzing samples of 
wild terrestrial carnivores.

Analysis of fecal samples
Fecal specimens may render significant information 
about parasites’ identity, diversity, ecology, and epidemi-
ology, as well as infection intensity, dynamics, and distri-
bution. In addition, it may help to understand possible 
threats to carnivore populations, evaluate the impact of 
parasitism on population dynamics, the animals’ dietary 

habits, host population estimates, breeding, resource 
selection, and partitioning, and manage effective con-
trol and conservation strategies [26]. However, capturing 
and handling wild animals can often be challenging due 
to their wariness toward humans, trained personnel, and 
the costs [27]. Therefore, non-invasive sampling is often 
used, and molecular scatology has become a frequently 
used technique to study all the above features [26].

A multi-evidence approach should be conducted to 
monitor the presence of an animal species and to avoid 
identification and multiple sampling biases [28]. Identi-
fication bias refers to the possible misidentification of a 
species based on the morphological assessment of a scat, 
whereas repeated sampling bias refers to the possibility 
of sampling a scat from the same individual more than 
once [29]. This first step of animal species identification 
has crucial epidemiological and ecological implications. 
This is the case when describing a new animal species 
as a host for a certain parasite [10]. Herein, we provide 
several aspects to consider when collecting and analyzing 
scat or fecal samples.

Fecal sample collection, preservation, and identification
Different sample collection methods have been 
described, each one having its advantages and disadvan-
tages in terms of costs, risk of pathogen transmission to 
the researcher, and avoiding repeated sampling bias, i.e., 
sampling the same individual twice or more [29]. Inva-
sive monitoring involves the trapping of animals and 
the collection of samples directly from the animal’s rec-
tum by using a disposable glove or a fecal loop [29, 30]. 
Alternatively, invasive sampling may also be performed 
by taking feces directly from the gut of carcasses [31]. 
Furthermore, the necessity of capturing animals for sam-
ple collection should be argued and protocols should be 
prepared and presented in advance to receive permission 
from an ethical committee. For these reasons, non-inva-
sive approaches have increasingly been used [29, 32, 33].

During invasive monitoring, repeated sampling bias is 
avoided, but this strategy may involve animal euthanasia 
or increase animal stress when sampling from the rec-
tum and is costly. Therefore, invasive sampling is often 
used for large spatial analysis or long-term monitor-
ing or when animals are marked with GPS collars [34]. 
Moreover, fecal samples collected directly from animal 
carcasses require special care to avoid transmission of 
zoonotic pathogens [35]. For instance, work surfaces 
should be prepared and sterilized accordingly, adequate 
personal safety equipment should always be used and 
carcasses must be frozen at −80 °C for at least 3 days [36]. 
Even though freezing decreases the detection of some 
parasites due to their sensitivity to low temperatures, this 
procedure ensures a reduction in the risk of pathogen 
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transmission. After the elapsed time, ectoparasites, as 
well as tissue or fecal samples, may be collected. If the 
description of gastrointestinal parasite communities 
is aimed, the entire small intestine and ceca should be 
examined by segmenting the whole gut into equal parts 
with further microscopic analysis [36]. This task may be 
lengthy and laborious, but some methods have eased the 
collection of macroscopic parasites. One protocol known 
as “shaking in a vessel technique” involves the longitudi-
nal opening of the gut with the release of all its contents 
into a plastic container equipped with a 100–200  µm 
diameter sieve in the cap. Then, gut contents are washed 
with abundant water, and parasites are sieved and col-
lected [37].

Non-invasive sampling involves collecting scats from 
the environment and detecting animals with camera 
traps, analysis of footprints (Fig. 2a) [27, 30], or the use 
of trained scat-detection dogs as previously used for 
coyote (Canis latrans), jaguars (Panthera onca), cou-
gars (Puma concolor), ocelots (Leopardus pardalis), or 
cheetah (Acinonyx jubatus) scats [29, 38–41]. The lat-
ter approach may be faster and more specific but more 
costly than the two former methods. Previous studies 
have compared different non-invasive sampling strat-
egies regarding the latency of initial detection of the 
carnivore and the probability of detecting the animal. 
All methods showed varying efficiencies for different 

carnivore species [27]; therefore, it is recommended to 
consider the target animal host when selecting a sam-
pling method.

The aim of the study should be defined before collect-
ing and preserving scats since some preserving agents 
may prevent further analyses and may alter the analysis of 
certain specific parasitic stages (Fig. 3). Fresh fecal sam-
ples are preferred since species assignment by using mor-
phological or molecular methods is more accurate [26]. 
Room temperature storage will be convenient if samples 
are analyzed within 24  h since deoxyribonucleic acid 
(DNA) degradation will start and parasite viability will 
decrease [42, 43]. For instance, the first (L1), second (L2), 
and third (L3) larval stages of some nematode species of 
the families Ancylostomatidae and Strongyloididae have 
positive geo- and thermotropism which enables them to 
be concentrated in a Baermann apparatus [44]. Therefore, 
false negative results would arise if samples aimed at the 
detection of parasites of these two families were immedi-
ately frozen or dried. Furthermore, fecal samples kept at 
room temperature for more than 24 h with low humid-
ity will be useful only for helminth egg or oocyst analysis, 
similar to the conditions found in the study of coprolites 
[45]. On the other hand, analysis of fecal samples col-
lected after > 3 days in a high-humidity environment may 
contain degraded larval forms [46], as observed for stron-
gylids of the white-tailed deer (Odocoileus virginianus), 

Fig. 2  Basic procedures for the analysis of parasites in fecal samples from wild terrestrial carnivores. This figure was created using Biorender.com
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and can also stand true for carnivore-associated parasitic 
larvae.

Samples maintained and processed at room tempera-
ture for periods less than 24  h may still be suitable for 
morphometric measurements of tapeworm segments 
and adult nematodes when/if present. It is recommended 
to place fresh worms collected from feces or any animal 
cavity in warm phosphate-buffered saline (PBS) buffer 
or saline solution so their tissues relax while they lose 
their viability [47]. Alternatively, other protocols recom-
mend placing fresh worms in a container with tap water 
and then refrigerating and storing them in ethanol or for-
malin, depending on the aims of the study [48]. On the 
contrary, if worms are placed directly in ethanol or cold 
PBS their muscle fibers will contract, and some major 
taxonomical structures will not be evident, or their meas-
urements will vary from type specimens (personal obser-
vations of the authors). For detailed protocols regarding 
nematode, trematode, or cestode clearing and staining, 
consult Sepulveda and Kinsella [47].

DNA degradation increases with time and higher tem-
peratures, therefore, samples aimed for molecular anal-
ysis should be collected and stored at −20  °C whenever 
possible. Still, frozen feces may be thawed and analyzed 
for the presence of helminth eggs or some larvae families. 
It has been observed that Crenosoma vulpis larvae retain 
their viability after 7 months at −20 °C and at −80 °C they 
survive for at least 50 days] [49, 50]. Larvae of Crenosoma 
goblei have been reported to survive freezing at −25  °C 
for up to 14 months [51]. It is important to keep in mind 
that although freezing is suitable in most cases, this pro-
cess may destroy the fine structures of host tissues and 
parasites. Generally, histopathological examination, hel-
minth staining, and examination using electron micros-
copy are almost impossible from frozen tissues [52]. 
Hence, if macroscopic parasites are observed in scats, 

some may be separated from the sample and relaxed in 
warm PBS for morphological assessment and some oth-
ers in 70–95% ethanol for molecular analysis or frozen 
at −20 or −80  °C optimally in DNase-free tubes. Scats 
may be placed in formalin (maximum 4%) for long-term 
preservation and fixation of parasites. Nevertheless, for-
malin fragments DNA and creates adducts that halter 
further molecular reactions [53]. For this reason, freezing 
in 70–95% ethanol [32] or storing in dimethyl sulphoxide 
saline solution at a proportion of 1:4 scat:solution [40, 54, 
55] is recommended to prevent DNA degradation.

Correct identification of host animal species is cru-
cial for parasite identification. Misidentification may be 
diminished with morphological observations of scats and 
DNA analysis of samples. Analysis of macroscopic char-
acters includes color, size, shape, and presence of undi-
gested animal or plant matter such as bones, feathers, 
teeth, hair, scales, exoskeletons, or otoliths (Fig. 2b and c) 
[56, 57]. Morphology-based identification is inexpensive 
and does not involve specialized equipment [58, 59] but 
requires high expertise in the identification of the afore-
mentioned elements and the freshness of samples may 
significantly alter these characteristics. For instance, high 
humidity found in tropical locations may disintegrate 
some of these diet-associated elements, in contrast to low 
humidity [60]. In addition, the risk of repeated sampling 
is higher in morphology-based identifications but can 
be reduced with the rule of minimum distance using the 
estimated home range size of the animal [56, 61]. There-
fore, molecular biology-based approaches are becoming 
widely used due to their high accuracy and decreasing 
costs [26].

Several factors may interfere with the correct species 
assignment during scat morphological analysis. Skilled 
scat surveyors from Scotland could not consistently iden-
tify scats of American minks (Neogale vison) based on 

Fig. 3  Examples of wildlife sampling. a Foot pad of a coyote (Canis latrans). b Hair remnants (white triangle) associated with prey in a scat 
from a coyote. c Hair (white triangle) and nail (black triangle) remnants associated with prey is a scat from a coyote
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footprints, fecal sample size, shape, and smell [62]. The 
identity of these samples was confirmed by extracting the 
DNA of scats, which were confirmed to belong to pine 
martens, red foxes, polecats, and stoats [62]. A study on 
scats from snow leopards (Panthera uncia) in Pakistan 
showed that only 52% of scats were correctly assigned 
when doing a morphological assessment, whereas the 
rest of them belonged to red foxes, gray wolves (Canis 
lupus), and corsac foxes (Vulpes corsac) [63]. In addi-
tion, carnivores with similar body sizes and diets may 
have overlapping scat measurements, and thus, can be 
misidentified. For instance, fecal samples of pine martens 
and red foxes from Britain could not be identified in the 
field with high confidence and were mistakenly classified 
when confirmed with DNA analyses [64]. However, scat 
identification may sometimes prove unequivocal when 
no other sympatric species are present, like in the case of 
brown bears (Ursus arctos) in European countries. Even 
though morphology-based scat identification methods 
seem convenient in instances of limited resources, these 
may lead to false identifications, especially if sympatric 
carnivore scats are screened, thus DNA analysis should 
be aimed for [26].

DNA analysis of fecal samples
This should be performed whenever possible due to the 
high accuracy in host and parasitic species assignment, 
and their application in non-invasive fecal sampling [28]. 
Host DNA is detected from epithelial cells shed from the 
gastrointestinal tract of the predator. In this way, preda-
tor DNA exceeds prey and parasitic DNA. Still, high 
loads of bacterial DNA and polymerase chain reaction 
(PCR) inhibitors remain in the sample. Mitochondrial 
DNA (mtDNA) like cytochrome b (cytB) or 12S [26, 36, 
55] or single nucleotide polymorphisms (SNPs) [29, 65] 
are widely used for predator identification. Mitochon-
drial DNA is present in hundreds to thousands of cop-
ies per cell, whereas there are only two nuclear DNAs per 
cell [66]. Moreover, SNPs may render useful information 
regarding population structure, hybridization, or individ-
ual relatedness [36, 65]. Nevertheless, DNA analysis may 
be challenging due to the non-controlled conditions of 
collected samples.

Repeated sampling bias is decreased in DNA analysis 
by genotyping individuals with microsatellites [32] or 
SNPs [29, 30, 65]. SNP analysis amplifies short DNA frag-
ments, which enables higher amplification rates when 
compared to using longer and fragmented DNA, whereas 
microsatellite amplification has low success and high 
error rates due to the low quantity and quality of target 
DNA [65].

Special care should be taken when handling samples 
for DNA analysis. Quantity and quality of DNA may 

be affected by the time scats remain in the field, direct 
exposure to sunlight, high humidity and temperatures, 
increased hemoglobin content derived from the animal’s 
diet, drying or preservation method after collection, 
and DNA extraction method [67]. All these factors may 
increase the activity of exo- or endonucleases of bacterial 
origin that degrade DNA or increase the activity of PCR 
inhibitors present in fecal samples, leading to low DNA 
concentration [65]. Therefore, drying scats are usually 
performed to decrease the activity of nucleases and DNA 
degradation. Detection of nematode non-embryonated 
eggs in feces may contain lower DNA and when feces are 
fresh, in vitro embryonation is recommended as the pres-
ence of larva in the eggs was associated with higher DNA 
quantity, so this could be done for reducing the false neg-
ative results [68].

Some research teams opt to dry scats when collected to 
reduce moisture from feces and, thus, bacteria-induced 
DNA degradation. However, this step is optional since 
successful DNA amplification has been achieved from 
non-dried samples [65]. Drying can be accomplished 
with silica desiccants, or by air [32, 63], freezing, heat-
ing at 40 °C in an oven [29, 30], or microwaving. Freezing 
and oven-drying have been the most effective methods 
for subsequent host DNA or parasitic DNA amplification 
[66]. Once samples are dried, the outer layer of the scats 
is scraped for further processing [29]. DNA extraction 
may be done with commercial kits specific for feces [26, 
40, 55, 65, 67].

Parasite analysis of fecal samples
This may be accomplished with two different strategies 
depending on the employed sample preservation agents. 
Coproparasitological analysis including fecal flotation, 
ethyl-formalin concentration, sedimentation, and larval 
cultures may be done on unpreserved samples or those 
preserved in formalin or ethanol, whereas molecular 
studies can be done only on samples stored in ethanol or 
no preservative [69].

Fecal flotation, sedimentation, and larval concentration 
methods have been used to detect parasite eggs, larvae, 
and oocysts. Protozoan cysts or trophozoites are difficult 
to observe in scats since their morphology is significantly 
altered during the time elapsed from collection to analy-
sis. For instance, flotation using saturated sodium chlo-
ride solution was used to detect eggs and oocysts from 
Formosan black bears (Ursus thiberanus formosanus) 
of Japan, leading to 77.3% positivity with the following 
parasites: Baylisascaris transfuga, Strongyloides sp., Tri-
chostrongylus sp., Oesophagostomum sp., ancylostoma-
tids, Taenia sp., Physaloptera sp., Gongylonema sp., and 
Cryptosporidium sp. [56]. In addition, Capillaria spp., 
ancylostomatids, C. vulpis, A. vasorum, Toxocara canis, 
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Sarcocystis spp., Hammondia/Neospora spp., Cystoisos-
pora ohioensis, Giardia sp.,Cystoisospora canis, Trichuris 
vulpis, Taenia spp., Dibothriocephalus latus, Strongy-
loides spp., Opisthorchis felineus, Toxascaris leonina, 
Alaria alata, and Mesocestoides litteratus were detected 
in Croatian wolf scats using concentration with sodium 
acetate-acetic acid-formalin (SAF) and ethyl acetate 
[70]. Moreover, a combination of zinc salt sedimenta-
tion–flotation was used to detect ascarids, strongylids, 
taeniids, Trichuris sp., Capillaria sp., Eimeria spp., and 
spirurids from red pandas of Nepal [61]. A previous work 
described both flotation and sedimentation to increase 
the detection of parasites in wildcats (Felis silvestris) 
from Italy showing that 90.9% of samples were positive by 
the flotation technique, 65.4% positive with sedimenta-
tion and 60.9% of samples were positive when using both 
assay [33].

Considering that carnivores eat other animal tissues as 
prey, spurious or false parasitism should be distinguished 
from true parasitism [44]. Usually, spurious parasit-
ism is suspected when observing egg or oocyst species 
unusual in the studied carnivore and results from the 
ingestion of infected tissues or feces and the passing of 
their eggs or oocysts through the gastrointestinal tract 
[71]. Examples are the observation of rodent-associated 
Hymenolepis diminuta eggs in coyotes from Costa Rica 
[72], Habronema sp., Schistosoma sp., Eimeria felina, and 
Macracanthorhynchus hirudinaceus eggs in African lions 
(Panthera leo) from Tanzania [71], Dicrocoelium dendrit-
icum and Trichuris sp. eggs in brown bears from Spain 
[57], lagomorph strongylid Protostrongylus pulmonaris 
originating from preys were observed in Eurasian lynx 
(Lynx lynx) from Germany [73]. Larval concentration is 
less often employed but can be accomplished in unfrozen 
freshly collected samples since larvae remain viable and 
their morphology remains preserved only for a few hours 
[56]. A larval culture method, also known as the Harada-
Mori technique, was used for the detection of larvae in 
Formosan black bears (Ursus thibetanus formosanus) 
[56] and the Baermann method has been used for the 
recovery of A. vasorum larvae on scats of red foxes from 
Canada [74]. Nevertheless, parasite analysis remains 
challenging since scats are usually dried and trophozoites 
or larvae have lost their motility.

Paleoparasitological techniques dealing with samples 
that have suffered extreme desiccation and fossilization 
are suitable for old, and dried fecal specimens. In archae-
ological materials, helminth eggs, larvae, and oocysts can 
be successfully recovered and identified with rehydration, 
homogenization, filtering, and sedimentation. This was 
the case of the recovery of Strongylida eggs and Eucoc-
cidiorida oocysts from a coprolite of a carnivore mam-
mal from Brazil [75]. In another study from Argentina, 

eight different nematode species were found in copro-
lites of carnivores, presumptively Helminthoxys sp., 
Physaloptera sp., T. leonina, Trichuris sp., Heteroxynema 
viscaciae, and other Spirurid and Oxyurid eggs [76]. 
This demonstrates the utility of simple and inexpensive 
coproparasitological methods for the recovery of para-
sitic stages from extremely dried fecal samples as old as 
11,000 years before the present. Nevertheless, molecular 
parasitic identification remains challenging in these sam-
ples, since DNA amplification may not always succeed 
[75], although T. leonina cox1 fragment could be ampli-
fied from a cougar coprolite dated from the Pleistocene 
16,573 to 17,002 years ago [77].

In the recent decade, detection of genomic material 
of parasites by end-point PCR, real-time PCR, or meta-
barcoding has become popular [78]. Molecular analysis 
is especially useful in the differential diagnosis of taxa 
whose diagnostic stages cannot be identified to spe-
cies, such as the case of taeniid, strongylid, or ancylos-
tomatid eggs. Therefore, multiplex PCRs with amplicon 
sequencing directed to the mitochondrial DNA of Taenia 
spp. and Echinococcus spp. have been designed [79] and 
employed in field studies. A study in wolves, red foxes, 
corsac foxes, and snow leopards from Mongolia revealed 
that 27.7% of scats were positive for Taenia hydatigena 
and Mesocestoides spp. by running conventional PCRs 
that amplified 400 base pairs (bp) cytochrome c oxidase I 
(cox1) and 314 bp 12S fragments [80]. Taenia hydatigena 
and T. multiceps DNA were detected in Croatian wolf 
scats by using semi-nested cestode universal PCR [70]. 
Furthermore, Echinococcus granulosus sensu lato, Echi-
nococcus canadensis, Echinococcus multilocularis, Taenia 
serialis, Dipylidium caninum, and other unidentified Tae-
nia and Mesocestoides spp. were detected in wolf scats 
from the USA by using a multiplex PCR for the detection 
of cestode species [78].

Coproantigen testing
Coproantigen tests allow the detection of parasite anti-
gens in feces. Current laboratory and commercially 
available tests are largely genus specific and have high 
specificity. Advantages of coproantigen testing include 
antigen detection prior to prepatency and detection is 
independent of egg or oocyst output. Detectable parasite 
antigens usually remain stable for several days to months, 
depending on storage temperatures (−80  °C to 35  °C), 
allowing for coproantigen testing for an extended period 
of time [81]. In wild terrestrial carnivores, coproanti-
gen tests have successfully been employed to detect E. 
multilocularis [82, 83], E. granulosus [84], Giardia sp., 
Cryptosporidium sp. [85], and hookworm [86]. However, 
cross-reaction between closely related taxa remains chal-
lenging [87].



Page 8 of 23Rojas et al. Parasites & Vectors          (2024) 17:127 

Analysis of blood samples
In contrast to scats, analysis of blood samples of terres-
trial carnivores does not have complications related to 
host identification (Fig. 4). Moreover, the parasites’ diver-
sity of the host animals or its higher taxa is largely known. 
Blood is the ideal tissue for examination of infection with 
vector-borne pathogens including protozoan parasites 
e.g., piroplasms (Babesia and Cytauxzoon), Hepatozoon, 
Trypanosoma, filarial nematodes with blood-dwelling 
microfilariae, e.g., Dirofilaria, Acanthocheilonema, and 
blood-borne bacteria, e.g., Anaplasma, Ehrlichia, Rick-
ettsia, haemotropic Mycoplasma species, Bartonella, and 
more [88, 89]. Blood samples can furthermore be used 
for serological testing of a variety of different parasitic 
diseases.

Blood sample collection and preservation
Sample collection from wild animals may not always be 
straightforward and there are currently no standardized 
sample collection protocols for blood samples. The col-
lection of blood samples from live wild carnivore species 
is challenging but possible when the animal is trapped 
or caught in nature or when captive animals are under 
anesthesia or sedation for veterinary procedures. Blood 
samples are occasionally collected from wild carnivores 
housed in captivity for routine health checkups, e.g., 
for evidence of anemia, infection, or inflammation—via 
hematological parameters—and levels of electrolytes, as 
well as to assess organ function [90]. Samples collected 

for these purposes may also be used for parasite screen-
ing [91]. In the field, blood and serum samples can be 
collected from trapped wild animals. To collect adequate 
blood samples from terrestrial carnivores they must be 
anesthetized via remote injection or live captured dur-
ing catch-and-release or relocation operations [92–94]. 
However, direct sample collection from wild animals 
can sometimes be considered unethical because human 
proximity to wildlife may cause flight response and lead 
to abandonment of offspring, interruption of food intake, 
or may even lead to injuries to the animal that is to be 
caught, other animals in proximity, and occasionally 
humans. Blood samples collected under these circum-
stances are usually interventions after observation or sus-
ceptibility to an outbreak or due to other interventions 
[95, 96].

Frequently, blood samples of wildlife are collected post-
mortem from carcasses in the field or in the laboratory 
from animals that either died, were hunted or trapped, or 
road killed. When death occurs, veins and arteries col-
lapse and blood starts clotting and hemolyzing, which 
makes using syringes nearly impossible. However, occa-
sionally non-coagulated blood can be collected from 
large veins such as the femoral vein and auxiliary vein. 
Blood can also be collected from other locations in car-
casses in various states. Most of these samples are suit-
able samples for a variety of different tests. Whole blood 
samples can be collected from the heart or large blood 
vessels, they may be liquid or made up of partially or fully 

Fig. 4  Basic procedures for the analysis of parasites associated to blood samples from wild terrestrial carnivores. This figure was created using 
Biorender.com
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coagulated blood [97, 98]. Fluid collected from the tho-
racic cavity during necropsy is frequently collected and 
referred to among others as serosanguineous fluid, body 
fluid, thoracic transudate, bloody fluid, or bloody body 
fluid [99, 100].

Optimally, blood samples should be collected from 
fresh carcasses before postmortem changes as autolysis 
affects the sampling process and diagnosis. Whole blood 
can be collected in tubes directly and centrifuged to col-
lect serum, it can be frozen for further later processing 
or collected into tubes containing anticoagulants such 
as ethylenediaminetetraacetic acid (EDTA) to attempt 
to separate plasma by centrifugation for further test-
ing. However, the chance of successful plasma collection 
depends on the time since death, geographical region 
(e.g., Iceland versus Kenya), and the season (e.g., freezing 
winter versus hot-humid summer). Even if blood compo-
nent separation is not possible, EDTA-mixed-blood can 
still be used for consequent DNA isolation when stored 
at −80  °C. Alternatively, blood can be stored in tubes 
with 70% ethanol or frozen. Preferably, even the EDTA 
or ethanol-preserved samples should be frozen for long 
term storage [101].

When samples have been collected in the field, par-
ticularly in remote areas, from either live animals or 
carcasses, sample integrity can be compromised due to 
fluctuating temperatures, extended improper storage, 
and uncontrolled and prolonged transport conditions. To 
overcome some of these potential complications techno-
logically advanced cards and filter papers are being used 
for transport and storage of infectious samples for molec-
ular diagnostics and serology. The cards are cotton-based, 
cellulose paper impregnated with a mix of chemicals that 
lyse cells, denature proteins, and protect DNA, leaving a 
sample suitable for molecular identification without the 
risk of disease contamination and suitable for long-term 
storage [102, 103]. Several other filter paper types have 
been used to store whole blood or serum samples for 
serology. Dried samples result in comparable sensitivity 
and specificity to liquid serum samples in most serologi-
cal tests if stored properly and if elution of dried samples 
is comparable to serum [104]. Convincing results have 
been obtained with PCR, enzyme-linked immunosorb-
ent assays (ELISA), and even card agglutination test for 
Trypanosoma (CATT) when blood, buffy coat, serum, or 
plasma were recovered from filter papers [105]. The use 
of filter paper is fairly simple, they are soaked in blood 
and air-dried. Best results are obtained if filter paper is 
stored in a sealed bag with a desiccant immediately after 
drying [104]. Filter paper blood collection can be applied 
by researchers, veterinarians, hunters, trappers, and 
trained laypeople [106, 107]. Filter paper samples do not 
require refrigeration after collection, they are lightweight, 

and they can be easily transported and mailed in regu-
lar envelopes using standard mail at room temperature 
[108]. If any means of preservation is accidentally not 
available, the small volumes of blood for molecular exam-
ination can be dried on normal filtration paper, soft tis-
sue paper, toilet paper, or similar [52].

Microscopic examination
When fresh blood specimens are available, different 
methods including wet blood smear, hematocrit concen-
trations technique (HCT) or buffy coat method (BCM), 
and mini anion-exchange centrifugation technique 
(mAECT) can be employed to observe different parasitic 
forms of blood parasites under the microscope. How-
ever, morphological characteristics of parasites within 
one genus are not always distinct and make differential 
diagnosis nearly impossible [105, 109, 110]. For instance, 
intraerythrocytic merozoites of three canine Babesia 
species, including Babesia rossi (Nuttall 1910), Babe-
sia canis (Pianna and Galli-Vallerio 1895), and Babesia 
vogeli (Reichenow 1937), are morphologically identical 
when examined by light microscopy [111]. Moreover, 
the analytic sensitivity of microscopical examination 
methods is lower than molecular-based techniques, e.g., 
1 ×  104–1 ×  105 parasites/mL for wet blood film versus 
1–10 parasites/mL for genus/species-specific primers in 
the case of trypanosomes [105], and they work mainly 
(sometimes only) when used during the acute phase of 
infection [112]. It is worth mentioning that microscopic 
examination can have advantages over molecular analy-
sis, e.g., in the case of coinfections, PCR using group/
genus/species-specific primers, which are very common, 
and even Sanger sequencing can fail when the ratio of 
parasitemia is in favor of one parasite [113]. Moreover, 
cross-species reactivity is a known phenomenon in dif-
ferent parasite taxa, e.g., Leishmania [114], Trypanosoma 
[110, 115], and Dirofilaria [116].

Molecular identification
With the advancement of molecular methods and 
their widespread use, especially in the 21st century, 
molecular-based techniques that have higher analytic 
sensitivity have become more popular. Hence, when 
molecular-based tools are available, PCR and its vari-
ants, e.g., multiplex PCR, nested PCR, and quantitative 
PCR should be preferred. However, the costs of molecu-
lar testing are higher compared with microscopy and it 
needs specialized laboratory equipment and skilled per-
sonnel [110]. In blood samples, similar to fecal samples 
(see  “DNA analysis of fecal samples” section) autoly-
sis or self-digestion degrades DNA and activates PCR 
inhibitors leading to lower DNA concentrations. DNA 
extraction methods may be chosen among established 
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techniques considering the available equipments, budget, 
and time [117].

Serology
Serological methods allow the detection of antibodies 
in serum and other body fluids. They can detect current 
infections or previous exposure to pathogens, infectious 
agents, or foreign proteins. Some methods have been 
developed to detect pathogen antigens [118]. Antibodies, 
however, usually remain in the body longer than antigens 
[119]. Serological methods have long been used to study 
the infection history of wild animals and for the detec-
tion of parasitic pathogens in wildlife, because parasite 
isolation from wildlife can be challenging even under 
ideal conditions [120]. Recovery of some parasites would 
require invasive methods or even lethal sampling, for 
such and many other parasitic infections collection of 
blood or other samples for the detection of antibodies or 
antigens is often favorable. Furthermore, antibodies can 
persist for a long time, occasionally longer than the par-
asitic agent [120–123]. Single samples can be tested, or 
tests can be implemented for screening of large wildlife 
populations [21, 120]. An advantage of serological testing 
for screening over parasite isolation is that large numbers 
of samples can be tested at once in a short period of time. 
It is advantageous for surveillance and epidemiological 
screening of populations.

An advantage of serological testing for parasite expo-
sure postmortem is that the carcass state often does not 
hinder sample collection and diagnosis. Blood samples 
and serosanguineous fluid can still be collected from 
carcasses and organs of wildlife that were stored for 
extended periods of time, that were frozen, or exposed 
to heat or partial desiccation. Collected blood samples 
can be stored after collection for decades at −20  °C or 
below without significant disintegration of antibodies 
[124]. However, extended improper storage and repeated 
freeze–thaw cycles may impact the stability of antibodies 
and antigens in samples [125]. Sample collection method 
and sample type,, however may lead to differing serologi-
cal results. Thoracic transudate outperformed blood clots 
in certain serological tests [98] and filter paper samples 
are diluted in an elution solution, due to this dilution fac-
tor, and low antibody levels likely are not detected [107].

Different serological tests used in wild terrestrial carnivores
A variety of different serological tests have been devel-
oped for the detection of exposure to all classes of para-
sites. Some of the most applied techniques for samples 
of wild terrestrial carnivores are ELISAs, agglutination 
tests, immunofluorescent antibody tests (IFAT), and 
immunoblotting [94, 97, 126].

A range of laboratory-developed and commercially 
available tests have been evaluated for use in wildlife. The 
serological detection of Toxoplasma gondii via an agglu-
tination test has been implemented for many wild animal 
species. Aside from the agglutination test, ELISA and 
IFAT have also been used or evaluated for the detection 
of T. gondii antibodies in wild terrestrial carnivores; some 
of the tested animal species include arctic foxes (Vulpes 
lagopus) [126, 127], black bears, wolves [128], polar bears 
(Ursus maritimus) [94], Eurasian lynx [129], cheetah, 
African lion, leopard (Panthera pardus), caracal (Caracal 
caracal), brown hyena (Hyaena brunnea), spotted hyena 
(Crocuta crocuta), black-backed jackal (Canis mesome-
las), honey badger (Mellivora capensis), African wild dog 
(Lycaon pictus), bat-eared fox (Otocyon megalotis) [93], 
Florida panther (Felis concolor coryi) [130], and wolver-
ines (Gulo gulo) [50]. Serological tests to detect anti-
bodies of other apicomplexan and protozoan parasites 
have been used to detect Neospora caninum antibodies 
in red foxes, coyotes [97], polar bears [94], and a range 
of Namibian wild felids and canids [93]. Samples from 
Namibian wild felids and canids were also used for sero-
logical detection of Besnoitia besnoiti [93]. ELISA and 
IFAT for Leishmania spp. antibody detection has been 
implemented in several species of Brazilian wild canids 
[131].

Few serological tests have been used to detect helminth 
or arthropod infections in wild terrestrial carnivores. 
ELISAs developed for the detection of Trichinella spp. 
have been used in different bear species and foxes [94, 
132]. Commercially available and laboratory-developed 
ELISAs for the detection of sarcoptic mange in dogs have 
been evaluated and successfully used for fox samples 
[100].

Some serological tests that detect parasite antigens in 
blood samples have been used to detect parasitic infec-
tions in wild canids. ELISAs for the detection of Dirofi-
laria immitis antigen have been used to diagnose coyotes 
and Island foxes (Urocyon littoralis) [92, 116]. An antigen 
ELISA that detects A. vasorum antigen has been evalu-
ated for use in foxes [133]. For these two parasite species, 
rapid tests based on antigen detection have been devel-
oped. The SNAP® 4Dx® Plus test and Angio Detect™ test 
developed for dogs have been used to detect heart and 
lungworm infections in coyotes, foxes, badgers (Meles 
meles), and wildcats [19, 134–137]. Compatibility testing 
and evaluation of these tests with wildlife samples how-
ever were done on only a few occasions [19, 134, 135].

Serological test evaluation for wild terrestrial carnivores
To the authors’ knowledge so far, no serological tests for 
the detection of parasitic infections and exposure were 
developed with wild animal hosts in mind. Serological 
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tests are usually developed to detect parasite antibod-
ies in either companion animals [138–140] or livestock 
[140–144]. These tests are generally not validated for use 
in wildlife. Few tests have been evaluated for use in spe-
cific wild animal species after their initial development 
for domestic animals [128, 133, 135]. Serological tests 
can be translated to wild animal species as they are [145], 
but occasionally tests must be adapted such as by using 
species-specific secondary antibodies [146]. The perfor-
mance of each serological test should be evaluated before 
its use in serological studies, as validation of the assay, 
laboratory quality controls, and standards are important 
for the proper interpretation of serological test results 
[120]. Interpretation may be challenging as appropriate 
positive and negative controls may not always be avail-
able for a specific animal species or population. To deter-
mine appropriate test results sensitivity, specificity, and 
potential cross-reactions to other parasitic pathogens 
should be evaluated for each test and each wild animal 
species [147]. This is best done for individual populations 
to have population-specific cut-off values, as standard 
cut-off values are usually not known for wildlife species 
due to a lack of reference samples from target species and 
populations [119, 147]. Nevertheless, proper validation of 
assays for wildlife is often not possible for both labora-
tory-developed and commercially available tests due to 
a lack of samples or comparative gold standard tests and 
data [146].

What further complicates the interpretation of sero-
logical results of wild animals are factors regarding sero-
conversion. Individual immunological responses in wild 
animals to parasitic infections can vary due to individual 
fitness and environmental factors [148]. Depending on 
the animal species and individual there may be variation 
in seroconversion. Repeated infections may be necessary 
in some wild animals or species to induce a detectable 
antibody response. Furthermore, if animals were sam-
pled during incubation time the result may be negative 
[119]. Therefore, negative results may not necessarily 
rule out infection nor exposure. On the other hand, posi-
tive results may not always imply infection. Many wild 
animals are coinfected with multiple parasite species, 
which may lead to cross-reactions in certain serological 
tests [119]. When testing very young animals the chance 
of detecting maternal antibodies needs to be considered 
[149]. Generally, the half-life of antibodies to specific par-
asites and the duration of their detectability is not known 
for most wildlife species and may even differ in individual 
animals or populations [133]. These all represent notable 
limitations of serological methods for confirmation of 
parasitic infections in wildlife and may lead to misinter-
pretation of serological data. Therefore, for each sample 
acquisition method and each serological test strengths 

and limitations need to be considered to accurately inter-
pret the results of wild terrestrial carnivores.

Analysis of tissue
The importance of the time of death
The quality of tissue sampling obtained from a cadaver 
is greatly affected by the time an organism dies [150]. It 
is commonly accepted that the broader the time since 
death is, the capability to estimate the postmortem inter-
val (PMI) with accuracy reduces significantly [151–153]. 
It requires significant caution to accurately answer the 
question of when the exact moment an individual died 
happened. That is important when dealing with criminal 
cases (i.e., murder) where the impact of a correct evalu-
ation could suggest or remove suspects and validate or 
invalidate a suspect’s alibi [151, 153, 154]. Hence, iden-
tifying the cause of death may play a serious role when it 
comes to tissue degradation. Since wild carnivores often 
compete with humans for resources and prey on domes-
tic herbivores, unnatural death can be often observed 
[155–157].

Death will lead to a series of irreversible and unavoid-
able changes that will take place with a constant progres-
sion, even though the rate of these modifications can 
significantly vary due to a wide range of environmental 
and circumstantial factors [150, 158]. Although the esti-
mation of the time of death has been a topic of count-
less papers, a final accurate answer does not exist so far 
[150, 158, 159]. It is clear that the decomposition rate is 
a multifactorial process related to abiotic factors such as 
temperature [160–162] or humidity [163–165] and biotic 
factors such as bacteria [166–168] or insects [169–171]. 
Understanding the correlation between the location of a 
carcass found, along with the ecosystem in this place and 
inside the carrion itself, is valuable and can shed light on 
different aspects, such as the animal’s origin [157, 172].

Nowadays, it is still commonly accepted that, occa-
sionally, the best way to establish the time of death is via 
forensic entomology [159]. The latter is a forensic science 
that uses insects and other arthropod evidence to obtain 
the PMI by the time insects colonized the carcass [173–
175] and by evaluation of their expected lifecycle [177] 
along with the size and instar (age) of larvae [175].

Forensic entomology uses the understanding that 
diverse organisms will arrive at a carcass in different time 
intervals [176]. Among the most important species, flies 
play a crucial role in carcass degradation [176, 177] and 
are even considered stereotypical arthropods [178]. The 
first flies arriving at the carcass are blowflies (family Cal-
liphoridae) along with flesh flies (family Sarcophagidae) 
[176, 177]. Aiming to find a suitable medium to lay their 
eggs or deposit their larvae rather than feed on, adult 
female blowflies and flesh flies are attracted to a fresh 
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carcass. The female blowfly will oviposit large clusters of 
eggs (approximately 200 eggs each time), while the female 
flesh fly will larviposit on the remains [176, 178]. The 
eggs will hatch into the first larval stage at an expected 
interval [176, 178]. As the first instar feeds on the tissue, 
it will molt into the second, and then into the third larval 
stage [176, 179]. After that, the instar enters a wandering 
period in which it quits feeding and migrates far from the 
carcass to a dry and protected area to pupate [176, 177, 
180] until molting and coming out as an adult fly.

Insects do not provide the actual time of death but 
rather the minimum postmortem interval (PMImin) [180–
182]. PMImin is the determination of the amount of time 
that a carcass has been exposed to insect colonization. 
The maximum postmortem interval (PMImax) is mainly 
in use in human cases, and it refers to the estimated time 
that the person was last seen alive [173, 181, 182], and 
therefore, less applicable in veterinary medicine cases.

Sadly, forensic entomology is widely underused in wild-
life legal investigations, although it is a well-established 
discipline commonly used in police investigations of 
human cases. There is a significant gap in knowledge of 
the field among the authorities responsible for wildlife 
[182]. Yet, on many occasions, insect evidence has simi-
lar value in human and wildlife cases [182]. The insects 
associated with a carcass can assist with analyses related 
to the PMI and may also indicate whether the carrion 
has been relocated [182]. Moreover, insects and other 
parasites could provide clues regarding the animal’s ori-
gin [175, 182]. Nonetheless, a careful examination of the 
larvae is required since some species could colonize an 
organism intra vitam and, in such cases, be considered 
myiasis.

Myiasis can be classified into three categories. Obligate 
myiasis is when the insect has a period during its lifecycle 
for which it depends entirely on a living host (true para-
sitism) [163]. While many fly types induce true parasitic 
myiasis in domestic herbivores, the data regarding wild 
carnivores is poor and involves a narrow range of fly 
and host species [184–186]. Usually, obligatory parasites 
damage the surrounding tissue less when compared to 
facultative myiasis [176, 182]. Facultative myiasis is when 
insects that normally colonize carrions (mainly blow 
flies) colonize wounds or traumatized tissue. This is the 
most prevalent form of myiasis and the most significant 
in terms of forensic entomology [163, 176, 183]. Contrary 
to obligatory myiasis species, which are true parasites, 
the flies involved in facultative myiasis do not depend on 
the living host nor living tissue [183]. Cutaneous myia-
sis caused by facultative myiasis has the most damaging 
effect on the organism since, from an evolutionary per-
spective, the host being dead or alive will not affect the 
insect [183]. Accidental myiasis or pseudomyiasis occurs 

when dipteran eggs or larvae are accidentally eaten 
or licked from a wound [176, 183]. The insect species 
involved do not need a host to complete their life cycle 
[183].

To assume the PMImin, forensic entomologists estimate 
the age of the oldest immature insects [183]. Probably, an 
animal colonized during life died later [176, 183]. This 
colonization can occasionally occur much earlier than 
the actual time of death [183]. This fact raises significant 
problems since it might wrongfully suggest that the ani-
mal was colonized after death, resulting in an overesti-
mation of the PMI [176, 183].

Wild carnivores are more commonly investigated 
for parasites using parasitological necropsy [3], which 
involves macroscopic inspection for the detection of vis-
ible parasites such as ectoparasites (ticks, fleas, lice, Hip-
poboscidae) [187, 188] or endoparasites (adult helminths) 
and microscopic techniques for the detection of specific 
localized parasites (e.g., Trichinella spp. larvae in muscles 
or Otodectes cynotis mites in the ear canal) [189] or even 
complementary techniques like histological examination, 
serology, or DNA analyses using specific tissue samples 
[190, 191]. However, the parasitological investigation 
correlates with the general state of the carcass, and the 
diagnosis should be based on all aspects that can influ-
ence the results.

Sample collection and preservation
Tissue samples can be harvested from freshly collected/
hunted carcasses or after freezing, which is used for the 
conservation of the carcass (Fig.  5). Commonly, sam-
ples are collected after freezing to avoid biosafety issues 
and migration of ectoparasites away from the host [52]. 
Depending on the targeted type of examination, there are 
several possibilities for collecting and preserving tissue 
samples depending on the needs, physical space and vol-
ume of samples, and possible destination of samples (if 
shipping is involved).

Commonly, when an entire carcass is available, two to 
three tissue samples from all organs are collected. Sam-
ples can be preserved in labeled plastic bags, cryotubes, 
or other types of recipients and directly frozen or main-
tained at room temperature if placed in 10% formalin 
or absolute ethanol [192, 193]. Freezing has the advan-
tage of keeping the samples suitable for multiple types 
of techniques (DNA isolation, serology, microscopy) 
for long periods of time. But, it requires a lot of space 
in high-volume institutions, and it is more difficult to 
transport them if needed. Absolute ethanol-fixated tis-
sue fragments can be used for multiple DNA isolations 
and kept either at room temperature or in the freezer for 
long periods. This kind of conservation is mainly used for 
molecular investigations of parasites [194].
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Formalin fixation is unsuitable for DNA isolation due 
to DNA degradation [53]. However, when it comes to 
the morphological identification of preserved specimens 
or carcasses in formalin, this method is widely used, 
especially in museums, for long-term preservation and 
proved very reliable for endo- and ectoparasites [194]. In 
addition, the preservation of tissue samples in formalin 
is required for histology, an additional method of diag-
nosis. In this case, samples are placed directly in forma-
lin and can be kept for several years. It is worth noting 
that it is recommended to change the formalin periodi-
cally to improve tissue preservation. A second frequently 
used option is to embed tissue samples in paraffin blocks 
immediately after formalin fixation. This method comes 
with two major advantages: the easy long-time dry room 
temperature conservation method and the possibility of 
DNA isolation (thus challenging) from the tissue sample 
[194]. Even though it is possible to obtain genetic infor-
mation from formalin-fixed tissues containing parasites, 
there are very few available sequences for comparison for 
parasites of wildlife [195]. In addition, paraffin blocks are 
easy to transport and require a minimum of paperwork 
when shipped internationally.

Other long-term room temperature preservation meth-
ods were also described with good results for obtaining 
genetic material. Caputo et al. [196] compared three dif-
ferent media for the conservation of soft tissue and suc-
cessfully isolated DNA from all of them. However, after 
1  year, samples preserved in NaCl were dried, those 
kept in garden soil had fungal growth, and untreated 
samples became liquid due to autolysis [196]. Parasite 
genetic material was obtained successfully from tissue 
from human mummies for Trypanosoma cruzi [197], 
Schistosoma mansoni in liver tissue [198], and Leishma-
nia tarantolae [199]. It is challenging to examine highly 
putrefied carcasses for parasites. To date, there are no 
reports of parasites or other pathogens diagnosed by 
PCR from putrefied carcasses, even though several stud-
ies investigated the action of putrefaction on DNA recov-
ery in human legal medicine [200, 201].

Tissue examination for detection of parasites
No matter the carcass conservation technique and its 
general state (fresh/frozen/rotten), the examination 
should always start with the presence/absence of lesions 

Fig. 5  Basic procedures for the analysis of parasites associated to tissue samples from wild terrestrial carnivores. This figure was created using 
Biorender.com
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and determination of the type of lesions (antemortem 
versus postmortem), which requires specialized skills.

The examination depends on the type of parasite to be 
identified and the location in the host (Fig.  5). Macro-
scopic parasites can be easily identified in organs using 
simple dissection techniques. Usually, necropsy starts 
with skinning during which subcutaneous parasites such 
as Dirofilaria repens [202] (Fig. 6b), Filaria martis [203], 
or even ticks [204] can be detected in wild terrestrial car-
nivores. After detection, helminths can be removed with 
fine tweezers and preserved in formalin, ethanol, or both 
for further identification.

For the detection of adult cardiorespiratory parasites 
(Fig.  6a, d), the entire cardiorespiratory tract should be 
removed and isolated, then each segment is sectioned 
longitudinally starting from the trachea to the alveolI fol-
lowed by the pulmonary artery and the heart chambers, 
then a macroscopic examination is conducted. For bet-
ter visualization of small specimens, it is highly recom-
mended to examine the tissue under a stereomicroscope. 
Several complementary methods can be used to prevent 
false negative results. In addition to sectioning, the lung 
parenchyma can be immersed in water and squeezed sev-
eral times, and the obtained sediment examined under 
a stereomicroscope [205]. A similar method for parasite 

collection is the lung flushing or lung perfusion tech-
nique with PBS or saline solution, which is also used for 
the collection of nematodes with vascular localization 
(e.g., A. vasorum) [206, 207]. Other authors also recom-
mend the artificial digestion of lung tissue, which proved 
to be of great use for A. vasorum extraction [208] and 
even liberation of very long and coiled Filaroides osleri 
adults from nodules for a better morphological identi-
fication (personal observation of the authors). For the 
detection of small and profound parasites (e.g., Aeluros-
trongylus abstrusus in cats) small tissue sections can be 
collected and boiled in lactic acid followed by tissue com-
pression between two glass slides and examination under 
a microscope [209]. This last method has the advantage 
of the possibility of adding Canada balsam and conserv-
ing the specimens for years. Besides adult parasites, lar-
val stages can be detected in the respiratory tract using 
the Baermann method from lung tissue [210]. Although 
this method should be used in fresh carcasses, some 
larvae are very resistant and still motile even after deep 
freezing for many months (e.g., C. vulpis) and others 
can be collected dead by gravitational force [211]. His-
topathological examination proved to be a key method 
for the postmortem detection of lungworms in wild car-
nivores, as it was shown for Troglostrongylus brevior in 

Fig. 6  Examples of endoparasites detected during necropsy. a Dirofilaria immitis in the heart of a golden jackal (Canis aureus). b Subcutaneous 
D. repens in a golden jackal (Canis aureus). c Macroscopic appearance of Baylisascaris transfuga collected from a brown bear (Ursus arctos). d 
Angiostrongylus vasorum in the pulmonary arteries of a red fox (Vulpes vulpes). e Thelazia callipaeda in the eyes of a golden jackal. f Pearsonema plica 
in the urinary bladder of a stone marten (Martes foina)
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the Eurasian lynx and A. vasorum in wolves [212, 213]. 
Eggs and larvae can be detected using tracheal or bron-
chial scrapings as well as histopathological examination 
[206]. Microfilariae can be detected in the blood or in 
sanguinolent body fluids collected from carcasses using 
the modified Knott’s test [214] with distilled water [215].

Wild carnivores can be commonly infected with para-
sites localized in the nasal cavities (e.g., Linguatula ser-
rata, Eucoleus boehmi, Troglotrema spp.) or sinuses, 
which are more difficult to observe. A commonly applied 
method for their detection is the sagittal cutting of the 
heads, removal of the content with a scalpel, and direct 
examination [21, 216]. Barton et  al. [216] described a 
technique for the collection of L. serrata with the pres-
ervation of the intact skull. This technique, however, may 
not be suitable for thin nematodes such as E. boehmi or 
E. aerophilus because of the possibility of aspiration dur-
ing death or the localization in the sinuses.

In muscle tissue, microscopic parasites such as Trich-
inella spp. larvae or A. alata mesocercaires can be iden-
tified using muscular sections and examination between 
two glass plates, by artificial digestion, or histology [189, 
217, 218]. Artificial digestion is more sensitive, however, 
when working with frozen carcasses, larvae may lose 
their motility, but they are still released from the tissue 
[219].

For the detection of digestive parasites, the entire 
digestive tract should be carefully examined, start-
ing from the buccal cavity to the rectum, using visual 
inspection and complementary methods. Postmortem, 
the digestive tract should be isolated and removed from 
the carcass and further divided into segments. Each seg-
ment should be medially opened from the tongue to the 
anus, and macroscopic parasites like ascarids, strongyles, 
acanthocephala, and some cestodes can be visualized 
and collected [220] (Fig. 6c). However, small nematodes 
(e.g., Strongyloides spp. or Trichinella spp.) and certain 
cestodes (Echinococcus spp.) are not always visible espe-
cially when there is hemorrhage or intestinal content. For 
the detection of small parasitic forms, mucosal scrapings 
followed by sedimentation and examination for para-
sites under the stereomicroscope or successive washings 
of the digestive content in sieves and examination can 
be done [221]. Some authors prefer a different method, 
using the artificial digestion of each isolated digestive 
segment. The last, however, implies the use of chemical 
substances, which can be time consuming and expensive, 
but it is suitable for releasing encysted parasitic forms 
[222]. Intracellular forms of protozoans like Cystoisos-
pora spp. can be detected using the mucosal wet smear 
method [223] or histology [224], the last being unsuitable 
in frozen carcasses. In addition to the direct examination, 
coproscopical methods can be done using feces collected 

from the rectum or even gastric content for the detection 
and identification of preimaginal parasitic forms [225, 
226].

Less commonly investigated helminths such as the 
giant kidney worm Dioctophyme renale [227] in the renal 
capsule or Pearsonema plica and Pearsonema feliscati in 
the urinary bladder [228] can be detected by dissection 
of the parasitized organs (Fig.  6f ). In the case of Pear-
sonema spp., worms can be missed as they are small and 
thin, and diagnosis should be complemented by mucosal 
scrapings or urine sediment analysis for the identification 
of their specific eggs [228].

Although not very common, liver trematodes were 
detected in wild carnivores on several occasions using 
a standard dissection method [187, 229, 230]. For more 
accurate detection, the gall bladder can be opened under 
a stereomicroscope and scrutinized for parasites or artifi-
cial digestion of the entire organ can be done [230].

Ocular parasites are easy to observe depending on the 
location. Thelazia callipaeda, the oriental eye worm, was 
reported in free wild carnivores [13] and more recently 
in zoo carnivores [231]. This nematode is usually diag-
nosed by the visual inspection of the eyes, especially 
under the nictating membrane (Fig. 6e). A less frequently 
reported nematode in wild carnivores is Onchocerca lupi 
[232]. This nematode has a more profound ocular locali-
zation in various regions of the eye (cornea, retrobulbar 
space, conjunctiva) where it forms nodules. Considering 
this, the detection of these nodules involves the com-
plete removal of the ocular globe and careful examina-
tion [233]. For larvae detection, skin tissue samples can 
be collected from the interocular frontal area of the head 
and immersed in a warm saline solution. The sediment 
is then examined under light microscopy [234]. Other 
ocular parasites with ectopic migrations were reported 
in wild carnivores and reviewed in Otranto and Deplazes 
[10]. Using skin biopsy, microfilariae of other skin-dwell-
ing nematodes (i.e., Cercopithifilaria) can be found [235]. 
Hence, precise morphologic and morphometric exami-
nation is crucial. After the complete removal of all inter-
nal organs, the empty carcass should also be inspected 
for eventual encapsulated parasites or cysts (e.g., meta-
cestodes) [236].

Wild terrestrial carnivores are subject to infestation 
by different ectoparasites, such as fleas, ticks, lice, 
mites, and others [204, 237]. Postmortem collection 
of ectoparasites from wild carnivores is influenced 
by the time between death and collection of the car-
cass, body temperature, and activity of non-parasitic 
arthropods [238]. The first step in the detection of 
ectoparasites involves a macroscopic inspection of the 
entire body. When active ectoparasites are observed 
(e.g., fleas), chemical ectocides substances or even 
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normal tap water can be used to inactivate speci-
mens to avoid losing them. Depends on the type of 
carnivore species ectoparasites can either be combed 
out (when the fur type and state allow this) or manu-
ally collected with fine tweezers [236, 237] (Fig. 7a, b, 
d–f ). Many types of utensils can be used for ectopar-
asite collection, including brushes, combs, forceps, 
tweezers, adhesive tape, or even the vacuum method 
[239]. The vacuum method has the advantage of cov-
ering the whole surface of the animal and collecting 
the majority of ectoparasites. However, when used on 
a road-killed carcass, the presence of liquid blood and 
other body fluids from the fur can make the exami-
nation more difficult as it colors and wets the textile 
sheet (personal observation of the authors). For mites 
with a specific profound localization, such as Demo-
dex spp., profound scrapings are needed from vari-
ous body regions [240–242]. Thick skin crusts can be 
digested in 10% KOH to release any parasitic forms 
and further examined under the microscope [243]. 
Mites with a more internal localization like the ear 
meatus (e.g., Otodectes and Melesodectes) [244, 245] 
or the nasal cavities (Pneumonyssoides caninum) [246] 
can be detected by examining either a cotton swab or 
slide under the stereomicroscope or by performing the 
flushing method [247].

Detection of parasites using molecular biology techniques
Tissue samples are frequently used for the detection of 
microscopic parasites or other pathogens. Spleen tis-
sue samples represent a good alternative to blood sam-
ples for the detection of blood-borne pathogens in wild 
carnivores. The spleen along with blood are the most 
commonly selected samples that are suitable for molec-
ular detection of vector-borne pathogens (VBPs) in 
wild carnivores [109, 248, 249]. The spleen has a high 
density of nuclei and was used for the identification of 
Anaplasmataceae, Rickettsia sp., Bartonella sp., Cox-
iella brunetii [89], and parasites like filaroids [202], or 
Hepatozoon, Babesia, and Cytauxzoon [250, 251], and 
Leishmania infantum [252]. Other types of tissue can be 
used for DNA isolation of parasites or other pathogens 
like the brain for identification of N. caninum, T. gondii, 
and Encephalitozoon cuniculi [253]. Lung parenchyma 
is commonly used for the identification of respiratory 
parasites including migrating nematode larvae using 
molecular techniques [213]. Muscle sections from vari-
ous musculature are frequently used for the identification 
of Trichinella [254], T. cruzi [255], and T. gondii [256]. 
Commonly, for the identification of T. gondii, brain tissue 
is preferred [257]. Isolation of DNA for detection of para-
sites or other pathogens is possible from a wide range of 
tissues, including the skin, bone marrow, nasal and ocu-
lar swabs, lymph nodes, and urinary bladder [191, 258]. 

Fig. 7  Examples of arthropods detected during necropsy. a Tick fixed in the eye region of a gray wolf (Canis lupus). b Tick fixed in the interdigital 
space of a gray wolf. c Subcutaneous tick in an African wolf (Canis lupaster). d Tick fixed on the internal part of the ear pavilion in a golden jackal 
(Canis aureus). e, f Myiasis in a Syrian brown bear (Ursus arctos syriacus)
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Tissue samples used for molecular parasite detection 
methods can either be stored in 70% ethanol or kept fro-
zen [103].

Serology from tissue samples
Samples collected from tissue can be used for serologi-
cal testing. Freezing and thawing of organs and tissues, 
such as plucks, or muscle tissue has been implemented to 
collect bloody transudate or tissue fluid containing anti-
bodies which can be used for serological testing [21, 259, 
260]. Another technique described is placing lung tissue 
in PBS for the collection of lung transudate-containing 
antibodies [261, 262]. Lung transudate samples diluted in 
PBS, however, may result in false negative results due to 
the dilution of low antibody levels [261]. In case no blood 
or serosanguineous fluid can be collected from a carcass, 
bloody tissue fluids represent an alternative to collecting 
samples for serological testing. Even if carcasses, organs, 
or tissues were frozen or stored for extended periods 
sample collection from tissues should still be possible and 
result in adequate samples for serological testing [260, 
263].

Conclusions
Wild terrestrial carnivores can offer crucial information 
about parasitic diseases in specific geographical areas. 
Given the increasing changes in habitat, forest fragmen-
tation, and urbanization, screening wildlife populations 
for parasitic infections and other zoonotic pathogens is 
of great relevance to domestic animals and human pro-
tection. Nevertheless, studying parasites associated with 
wildlife offers a different scenario to that from para-
sites collected from domestic animals or humans. Sam-
pling methods, analysis tools, and several limitations are 
encountered during field work which are explained in 
detail herein. The authors advocate for the importance 
of using adequate diagnosis techniques for the identifica-
tion of parasitic infections from feces, blood, and tissue 
samples. This paper gathered available information for 
parasite investigation in wild terrestrial carnivores.
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