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Abstract 

Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such 
as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreo-
ver, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control 
is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resist-
ance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review 
provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern 
recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects 
of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process 
between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mos-
quito-borne infectious diseases.
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Background
As an important pathogen vector, mosquitoes trans-
mit a variety of insect-borne infectious diseases, such 
as malaria, dengue fever, yellow fever, and Zika, causing 
more deaths than any other vector-borne pathogen [1]. 
As the world’s number one “health killer”, mosquitoes 
pose a great threat to global public health. Pathogens 
enter the mosquito body mainly in the following two 
ways: bacteria and fungi easily enter the body through 
brakes in the cuticle or exoskeleton; viruses, Plasmo-
dium, and other parasites easily enter the midgut through 

mosquitoes sucking blood that contains the pathogens 
and penetrate the midgut tissue barrier through haemo-
lymph diffusion to reach other organs and tissues, such 
as the trachea, fat body, and salivary glands, which allows 
them to cross the salivary gland barrier, enter the saliva, 
and transmit to the next host through bites.

Infection with arboviruses induces an innate immune 
response in mosquitos that activates a complex mos-
quito-pathogen interaction, which in turn alters the gene 
expression profile of mosquitos. Similar to other arthro-
pods [2], mosquitoes lack an acquired immune system 
and rely primarily on innate immunity to protect against 
viruses, bacteria, fungi, parasites, and other pathogens 
[3, 4]. The mosquito innate immune system modulates 
infection by human pathogens or resistance to insect 
pathogens and increases the fitness and longevity of 
infected mosquitoes [1]. According to studies, cell-medi-
ated phagocytosis, melanisation, and lysis are the three 
main modes of pathogen clearance by mosquitoes [5]. 
Cellular and humoral immunity are involved in the regu-
lation of pathogen infection in mosquitoes, first through 
the recognition and binding of pathogens by pattern 
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recognition receptors (PRRs) and pathogen-associated 
molecular patterns (PAMPs) and then through the acti-
vation of immune-associated signalling pathways, thus 
triggering cellular and humoral immunity in mosquitoes. 
Cellular immunity defends against pathogen invasion 
through the circulation of insect peripheral haemolymph, 
with phagocytosis and encapsulation responses mediated 
by haemocytes and pericardial cells. Humoral immunity, 
which also occurs in the haemocoel, involves a variety 
of mechanisms, including the production of antimicro-
bial peptides (AMPs), the activation of melanization by 
the phenoloxidase (PO) cascade, and the production 
of reactive oxygen species (ROS) and nitric oxide (NO) 
[1, 3]. There is no clear boundary between the molecu-
lar pathways of action of cellular and humoral immunity, 
and some of the molecules that participate in humoral 
immunity are produced by haemocytes and participate in 
cellular immunity at the same time [6]. Although mosqui-
toes only have innate immunity, there is some evidence 
that they can induce an enhanced immunity when they 
encounter reinfection, called “immune priming” (also 
known as trained immunity). In addition, the immu-
nological role of mosquito symbiotic bacteria (includ-
ing gut microorganisms and Wolbachia) will be further 
investigated. This review provides an overview of mos-
quito innate immune mechanisms in terms of physical 
and physiological barriers, pattern recognition receptors, 
signalling pathways, cellular and humoral immunity, and 
immune priming, as well as the antipathogenic effects of 
mosquito symbiotic bacteria.

Physical and physiological barriers
The physical barriers of mosquitoes mainly include the 
exoskeleton, cuticle, epithelial-epidermal barrier, trachea, 
fat body, gut, haemocoel (including haemolymph and 
haemocytes), and salivary glands. Four of these compart-
ments, the midgut, haemocoel, salivary glands, and fat 
body, play dual roles as important physical and physio-
logical barriers (Fig. 1). There are four main physiological 
barriers: midgut infection barrier (MIB), midgut escape 
barrier (MEB), salivary gland infection barrier (SGIB), 
and salivary gland escape barrier (SGEB). Physiological 
barriers are reaction processes that occur in mosquitoes 
in response to pathogens. Depending on the site of infec-
tion and the state of infection, different responses occur 
in mosquitoes with the goal of eliminating the pathogen. 
In the case of pathogens, the goal is to successfully estab-
lish infection in the host.

Midgut
The midgut consists of a narrow anterior end and a wider 
posterior end, which are involved in the absorption of 
sugar and blood, respectively [7]. After the absorbed 

blood reaches the midgut, drastic changes in the epithe-
lial cells of the midgut can be observed, such as smaller 
nuclei, enlarged mitochondria, the disappearance of vesi-
cles of the rough endoplasmic reticulum and the appear-
ance of vortices, an increase in the number of residual 
lysosomes, and the accumulation of charged opaque sub-
stances between the cells [8]. The peritrophic membrane 
(PM, assembled from chitin and proteins) is secreted by 
the epithelium into the midgut to protect the epithelial 
cells from damage; it compartmentalises the midgut and 
therefore the blood meal digestion and regulates the pas-
sage of molecules [9, 10]. So, it could act as a protective 
barrier against pathogens. Pathogen proliferation in the 
midgut is greatly restricted by mosquitoes; for example, 
ookinetes can be lost at a rate of 0.05–1.00 × 104-fold 
in the midgut of different mosquito species [11], and 
infection of the midgut triggers the production of large 
amounts of AMPs [12] and immune proteins in other 
tissues.

The current study demonstrates the presence of MIB 
and MEB in the midgut. In refractory mosquitoes with 
MIBs, the pathogen is unable to infect and replicate in 
mosquito midgut cells. There are several hypotheses that 
explain the mechanisms leading to MIB, including the 
transfer of pathogens to chitin-lined sacs in mosquitoes; 
compartmentalisation of pathogens (e.g. viruses) by the 
PM [13]; digestion of pathogens by enzymes in the mid-
gut leading to inactivation; pathogen-midgut interac-
tions that prevent binding [14]; lack of surface receptors 
in the midgut epithelium [9]. In the presence of MEBs, 
the pathogen can replicate in the midgut, even to high 
titres, but the virus may not be able to leave the midgut 
and spread the infection. Factors such as pathogen load 
or the dose and duration of pathogen transport deter-
mine whether pathogens successfully escape from the 
midgut [15]. The following two main hypotheses explain 
the MEB: the direct use of basal lamina and tracheal cells 
as a conduit between the midgut and the haematopoietic 
sheath [15]. MEB is dose-dependent [16, 17], and MEB 
also plays an important role the innate immune memory 
of pathogens in mosquitos [18].

Haemocoel
The haemocoel plays an extremely important role in 
the innate immunity of mosquitoes as pathogens pen-
etrate the midgut and then enter the haemocoel, where 
they reach the rest of the body through the autodriven 
or the haemolymph circulation; this is the site where 
most cellular and humoral immunity occurs [19]. Once 
the pathogen enters the haemocoel, it is in an environ-
ment rich in immune cells and humoral immune fac-
tors consisting of haemocytes, pericardial cells, and 
fat bodies. Of these, haemocytes are the main immune 
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cells in the mosquito. The mechanism of action in the 
antiviral immunity of haemocytes is unclear and direct 
evidence is lacking [20]. However, some studies have 
shown that arboviruses are tropic for mosquito haemo-
cytes [21–23]. In addition, haemocytes are immune 
surveillance cells that initiate the immune response 
and have a variety of functions that may contribute to 
antiviral immunity, including the production of PRRs 
and proteins responsible for phagocytosis and nodu-
lation, as well as other molecules (e.g. melanisation 
modulators and enzymes, signal transduction proteins, 
stress-responsive proteins, and AMPs) to kill or isolate 
pathogens [24].

Haemocytes are mainly classified into prohaemo-
cytes, oenocytoids, and granulocytes, which exist as 

both circulating (within the haemolymph) and ses-
sile (in the tissues) [1, 25, 26]. Granulocytes make up 
80%–95% of circulating haemocytes and are phago-
cytic [27]. Oenocytoids make up about 10% and are 
the main producers of PO [28]. However, other studies 
have shown that haemocytes may produce a variety of 
factors involved in melanisation, including POs, ser-
ine proteases (SP), serine protease inhibitors (SRPN), 
phenylalanine hydroxylase, dopachrome convertase 
and C-type lectins (CTLs), as well as cytotoxic factors 
such as ROS and RNS [24, 29–32]. In addition, multi-
ple haemocytes aggregate and bind to bacteria to form 
multicellular sheaths, called encapsulation or nodu-
lation, which is the primary defence response for the 
removal bacteria from the haemolymph [33, 34].

Fig. 1  Main immune-related compartments of mosquitoes. The small blue arrows indicate the general circulation pattern of the pathogens 
in mosquito after the mosquito feeds on blood infected with the pathogen. Pathogens include viruses, bacteria, fungi, Plasmodium, etc. The 
pathogen enters the infected blood, partly develops in the intestinal epithelium, partly excretes from the intestines, and is passively transported 
through the mosquito’s circulatory system as it crosses the haemocoel to reach the salivary glands. The large black arrows indicate the four main 
immune compartments, including the midgut [represented by midgut epithelial cells; containing the midgut infection barrier (MIB) and the midgut 
escape barrier (MEB)], salivary glands [containing the salivary gland infection barrier (SGIB) and the salivary gland escape barrier (SGEB)], haemocoel 
(represented by haemocytes), and fat body (represented by trophocytes and oenocytes)
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Salivary glands
The salivary glands play a major role in disease trans-
mission, and invasion of the salivary gland epithelium 
and migration to the salivary gland ducts is necessary 
for most pathogens to complete their life cycle. Salivary 
glands secrete a variety of proteins involved in differ-
ent activities, such as CTLs that bind to specific carbo-
hydrates on the surface of microorganisms and are the 
primary PRRs [35–38]; adenosine triphosphate bisphos-
phatase (apyrase), which is involved in blood feeding and 
helps mosquitoes locate blood [39]; and D7, which inter-
feres with haemostasis and vertebrate immune responses 
[40]. To date, little is known about the role of the salivary 
glands as immunologically active organs in the anti-
pathogen response, but saliva contains complex protein-
peptide mixtures, antimicrobial agents, anticoagulants, 
proteins with angiogenic or anti-inflammatory proper-
ties, and immunomodulators, which can act in conjunc-
tion with pathogens that infect the host [41].

Furthermore, the molecular mechanisms underly-
ing the SGIB and the SGEB in the salivary glands have 
not been clearly defined [42]. The concepts of the SGIB 
and SGEB are tentatively supported by different patho-
gen infection experiments in different mosquito species, 
including La Crosse virus (LACV) in Aedes triseriatus, 
Eastern equine encephalitis virus (EEEV) in Ae. albopic-
tus, and Japanese encephalitis virus (JEV) and West Nile 
virus (WNV) in Ae. aegypti [43–45]. The SGIB has been 
demonstrated in Culex annularis infected with Western 
equine encephalitis virus (WEEV) and EEEV [16]. These 
viruses spread from the midgut to the fat body but can-
not enter the salivary glands. Experiments with Rift 
Valley fever virus (RVFV) infection in the genus Aedes 
provide evidence that the basal lamina surrounding the 
salivary glands acts as a major barrier to infection [46]. 
Another study described the role of haemolymph in 
the SGIB, with the haemolymph of Culex tarsalis being 
more susceptible to WEEV infection compared to refrac-
tory females [14]. According to the study, the SGEB 
appeared in Aedes and Culex mosquitoes transmitting 
LACV, SINV, and RVFV [47–50]. The study likewise 
found that AgESP contributes to the passage of Plasmo-
dium through the SGEB of Anopheles gambiae and that 
Plasmodium successfully completes its life cycle in mos-
quitoes by modifying the actin cytoskeleton of mosquito 
epithelial cells, a process that AgESP may be involved in 
regulating [17].

Fat body
The fat body is a major metabolic organ and a primary 
source of haemolymph proteins [51]; it participates in 

energy metabolism and reproduction by providing pre-
cursors for flight and yolk protein synthesis [52] and 
plays an important role in the innate immune response. 
The expansion of the fat body from the body wall to the 
visceral organs is hypothesised to increase the surface 
area of the organs and enhance communication with 
the haemocoel [53]. The fat body consists primarily of 
trophocytes and oenocytes but is generally thought to 
include sessile haemocytes, pericardial cells, peripheral 
neurons, and associated tracheoles [54, 55]. Trophocytes 
are mesodermal cells that provide energy and nutrients 
for locomotion and reproduction [56]. Oenocytes are 
ectodermal cells whose primary functions are detoxi-
fication, lipid metabolism, and, to a lesser extent, the 
maintenance of homeostasis in the mosquito; they are 
immunocompetent. Transcriptomic analysis revealed 
that oenocytes express many immune-related genes, with 
the most abundant transcript being lysozyme P. In addi-
tion, the peripheral position of oenocytes may contrib-
ute to the recognition of pathogens to activate the innate 
immune system, which in turn elicits the expression and 
secretion of immunity factor [57].

In insects, the fat body is the main organ that responds 
to microbial invasion and is able to secrete AMPs that 
can rapidly reach effective concentrations against invad-
ing microorganisms [58]. In mosquitoes, the fat body is 
equally involved in several immune pathways and AMPs 
synthesis in response to bacterial and Plasmodium infec-
tions [59]. Some of the fat body transcripts are thought 
to encode immune-related proteins, including defensins 
(DEFs), cecropins (CECs), CTLs, gram-negative bind-
ing proteins (GNBPs), and peptidoglycan recognition 
proteins (PGRPs) [52, 60]. In addition, enhancement of 
insulin signalling within the fat body of Anopheles ste-
phensi enhances the host immune response to bacte-
rial and Plasmodium falciparum infections [61]. Several 
studies have shown that altering the immune function 
of mosquito fat body through transgenic techniques can 
make mosquitoes susceptible to pathogens or develop 
resistance [62]. It has also been found that proliferation 
of oenocytes expressing DBLOX peroxidase maintains 
immune priming in mosquitoes [63].

Pattern recognition receptors (PRRs) 
and pathogen‑associated molecular patterns 
(PAMPs)
The activation of the mosquito innate immune system 
first starts with the recognition of pathogens. When 
a pathogen infects a mosquito, it is recognised by the 
host through molecular interactions between PRRs and 
PAMPs. A genomic analysis of A. gambiae revealed the 
presence of nearly 150 PRRs, the vast majority of which 
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clustered as members of several gene families. Usually, 
PRRs are host-secreted proteins found in different body 
parts, such as the midgut, and have an adhesive struc-
tural domain that interacts with PAMPs.

Thioester‑containing proteins (TEPs)
TEPs are normally found in haemolymph and are pri-
marily involved in bacterial and Plasmodium infections. 
Their role as essential pathogen recognition molecules 
in Drosophila melanogaster, A. gambiae, and Ae. aegypti 
allows for the neutralisation of pathogens [64–66]. In 
mosquitoes, studies on TEP have focused on TEP1 pro-
duced by haemocytes, which is phagocytic and inactive 
on its own and requires activation by proteolytic cleav-
age [67]; TEP1 then stabilises itself by forming a complex 
with the leucine-rich repeat (LRR) structural domains of 
the LRIM1 and APL1C proteins [3]. Only after the for-
mation of the complex can stable TEP1 bind to bacte-
ria in the haemolymph and Plasmodium in the midgut, 
thus leading to clearance [68–70]. Variants or polymor-
phisms in the TEP1 and APL1 sequences were associated 
with the efficiency of Plasmodium in killing mosquitoes 
[71]. The role of TEPs was similarly evaluated in Ae. 
aegypti infected with dengue virus (DENV) and WNV. 
RNAi-mediated overexpression and silencing of TEP1 
and TEP3 revealed that the viral load was reduced when 
TEP1 was overexpressed, but TEP3 overexpression did 
not lead to a reduction in viral load, further illustrating 
the role of TEP1 in regulating viral infection [65].

Fibrinogen‑related proteins or fibrillin (FREPs or FBN)
FREPs are the largest family of pattern recognition recep-
tors in A. gambiae, with 59 putative members identified, 
and 37 FREPs have been identified in Ae. aegypti, most of 
which had upregulated expression in response to bacte-
rial, fungal, or Plasmodium infection [10, 72, 73]. Using 
RNAi-mediated gene silencing, members of the FREP 
family were found to play a crucial role in the innate 
immune response and maintenance of immune homeo-
stasis in mosquitoes [74]; furthermore, silencing of fibrin-
ogen-related protein 30 (FBN30) was able to markedly 
promote parasitic infections, whereas eliminating FBN1 
transcripts resulted in the absence of parasites within the 
mosquito [75]. The most studied member of this family 
is FBN9, which is associated with antibacterial and Plas-
modium immunological mechanisms, as FBN9 interacts 
with bacteria and binds directly to Plasmodium in mid-
gut epithelial cells, leading to their destruction [76, 77]. 
A comparative analysis of FNB9 gene sequences in four 
neotropical anopheline species (Anopheles davidianus, A. 
nueces, A. salinarius, and A. albopictus) and A. gambiae 

was also carried out [78], and clustering analysis showed 
that neotropical anophelines and A. gambiae belonged to 
two subgenera in different evolutionary branches.

C‑type lectins (CTLs)
CTLs are membrane-bound or soluble proteins that 
bind to carbohydrates in a calcium-dependent man-
ner and recognise pathogens by means of cell adhesion 
and cell-cell interactions, among other interactions. In 
addition, CTLs promote the activation of prophenolox-
idase and melanin deposition on pathogen surfaces in 
insects [79]. CTLs can induce both positive and nega-
tive feedback regulation in the immune response of 
mosquitoes. In A. gambiae, CTLMA2 and CTL4 of this 
family inhibit melanisation in the midgut, whereas in 
the haemocoel, they can be present as disulfide-linked 
heterodimers that kill Escherichia coli in a melanisa-
tion-independent manner. RNAi-mediated silencing 
or knockdown of these proteins resulted in increased 
bacterial loads in the bloodstream and reduced mos-
quito survival, suggesting that both proteins play a role 
in the antimicrobial response in mosquitos [38, 80]. 
In Ae. albopictus, the mannose-binding C-type lectin 
Aalb_CTL is equally involved in combatting yeast and 
gram-positive bacterial (G+) infections [15]. However, 
in Ae. aegypti, galactose-specific C-type lectin 1 (mos-
GCTL-1) promotes WNV adhesion to cell membranes, 
and mosGCTL-3 is the main factor that promotes 
DENV2 infection [37].

Gram‑negative binding proteins (GNBPs) 
and peptidoglycan recognition proteins (PGRPs)
GNBPs and PGRPs are the first PRRs to be studied in 
mosquitoes and can be found in different tissues, such 
as the midgut and salivary glands; these proteins play 
an important role in the recognition of bacteria and 
parasites [81]. In A. gambiae, six family members are 
recognised as PRRs, which act by binding to β-1,3-
glucan and lipopolysaccharide on the surface of the 
pathogen. All members of this family are increased 
after infection but vary in their antimicrobial specific-
ity and activity. GNBP4 is implicated in the regulation 
of immune signalling and plays an important role in E. 
coli, Staphylococcus aureus, and Plasmodium berghei 
infections but not in P. falciparum infections. GNBPA2 
is an important factor involved in the killing of E. coli 
and P. falciparum, but it has little effect on P. berghei 
and is not involved in S. aureus infections [82]. PGRPs 
recognise and bind peptidoglycan on the surface of 
pathogens. In Armigeres subalbatus infected with E. 
coli and Micrococcus garciniae, AsPGRP-S1 expression 
was increased after infection, and after silencing by 
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RNAi, it was found that AsPGRP-LCs may be involved 
in mosquito survivability but they are not the main fac-
tor in regulating bacterial infection [83].

Immunoglobulin superfamily (IgSF)
The IgSF specifically recognises and binds to cell sur-
face receptors [6], and the IgSF in A. gambiae consists 
of 138 genes, 85 of which have upregulated expression 
after infection and are involved in resistance to Plas-
modium and bacterial infections. One of the infection-
responsive genes with an immunoglobulin domain 
(IRID), IRID4 and IRID6, is involved in killing P. falci-
parum conidia; IRID3 and IRID4 control the growth of 
opportunistic bacteria, and IRID3, IRID5, and IRID6 
are involved in scavenging exogenous bacteria [84]. 
Another member of this family, AgDSCAM, has been 
shown to modulate bacterial infection and kill Plasmo-
dium in the midgut [77].

Immune signalling pathways
Immune signalling pathways protect mosquitoes from 
persistent infection by invading pathogens and oppor-
tunistic microorganisms and are involved in the regu-
lation of the natural microbiota, such as the gut flora. 
Immune signalling is an intermediate process that links 
pathogen recognition and the immune response. Three 
main immune signalling pathways exist in mosquitoes, 
namely, the Toll pathway, immune deficiency (IMD) 
pathway, and Janus kinase (JAK)/signal transducer and 
activator of transcription (STAT) pathway (Fig. 2). These 
pathways are activated and trigger immune effector mol-
ecules to neutralise invading pathogens, including bacte-
ria, fungi, Plasmodium, and viruses (Table 1). In addition, 
the RNA interfering (RNAi) pathway, although not a clas-
sical innate immune signalling pathway, also plays a key 
role in antiviral defence.

The Toll signalling pathway
The Toll pathway was originally discovered during the 
screening of genes associated with early embryonic 
development in D. melanogaster and was later found to 
play a crucial role in defence against fungi, gram-posi-
tive bacteria, and viruses [85–87]. The Toll pathway has 
reshaped the understanding of the immune system not 
only in Drosophila but also in other insects and even 
mammalian systems. In mosquitoes, genes regulated by 
the Toll pathway are controlled by the transcription fac-
tor Rel1 of nuclear factor kappa B (NF-κB). Silencing 
Cactus, a negative regulator of Rel1, to induce the Toll 
pathway significantly reduces the extent of P. berghei 

and Plasmodium gallinaceum infection in the midgut of 
Anopheles and Aedes mosquitoes. Cosilencing Rel1 and 
Cactus makes mosquitoes more susceptible, suggesting 
that Cactus-mediated susceptibility is controlled by Rel1 
[88, 89]. Cosilencing of Cactus and LRIM1 or Tep1 also 
renders mosquitoes susceptible, suggesting that these 
two effector molecules are induced by the Toll pathway 
[88].

In addition to the induction of antimalarial activ-
ity by Rel1, the Toll pathway is involved in the control 
of fungal and DENV infections [90, 91]. Knockdown of 
Rel1 increases mosquito susceptibility to fungus and 
attenuates the induction of Spaetzle 1A and Serpin-27A 
[90]. Serpin-27A is overexpressed in heat-killed bacte-
rial Aag2 cells as well as in fungus-infected female Ae. 
aegypti mosquitoes [92]. DENV infection of Ae. aegypti 
activates the transcription of Toll pathway-associated 
factors and putative effectors (Späetzle, Toll, Rel1A, and 
multiple AMPs) [91, 93, 94]. The Toll pathway begins to 
exert antiviral effects as early as 3 days after DENV infec-
tion, is able to protect against DENV infection in multi-
ple serotypes, and remains active in different Ae. aegypti 
strains [95]. Furthermore, the symbiotic Wolbachia in 
mosquitoes can inhibit DENV replication by inducing 
mosquitoes to produce ROS to activate the Toll path-
way and subsequently produce AMPs and DEFs [96]. The 
transcription of Dif, a Toll pathway transcription fac-
tor, is induced early in the infection of Ae. aegypti with 
Sindbis virus (SINV) [12]. The role of the Toll pathway 
in defences against WNV infection is unclear; Culex 
quinquefasciatus infection with WNV does not signifi-
cantly alter the expression of Toll pathway-associated 
genes or effectors [97], whereas Ae. aegypti infection 
downregulates the expression of mosquito homologues 
of Drosophila Späetzle 5 [98]. In addition, it has been 
found that activation of Toll signalling in A. gambiae 
mosquitoes by silencing Cactus modulates haemocyte 
differentiation leading to a large increase in circulating 
megacytes (from 2% to 80% of granulocytes) [99]. Moreo-
ver, megacytes are recruited to the midgut during Plas-
modium infection and release microvesicles that promote 
the activation of the mosquito complement-like system, 
thereby eliminating Plasmodium ookinetes and enhanc-
ing mosquito immunity.

Imd signalling pathway
The Imd pathway likewise plays a crucial role in mos-
quito immunity. The molecules acting in this pathway 
overlap with those in the Toll pathway; together, they 
trigger an immune response. Similar to Rel1 in the 
Toll pathway, Rel2, which belongs to the same fam-
ily, plays a central role in the Imd signalling pathway 
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and is involved in the regulation of major AMPs and 
cecropin 1. The Imd pathway not only plays an impor-
tant role in antimicrobial defence but also directs 
the immune response to Plasmodium [100–103]. 
This pathway also has an indirect effect on the viral 

load of Ae. aegypti [104]. Knockdown experiments 
showed that two isoforms of Rel2 (Rel2-F and Rel2-
S) in Anopheles mosquitoes are involved in immune 
defence against gram-positive and -negative bacteria, 
respectively. Rel2-F is also involved in regulating the 

Fig. 2  Immune-related signalling pathways in mosquitos. In the Toll pathway, the pathogen first binds to PPRs, which triggers the proteolytic 
cleavage of the cytokine Späetzle and then activates the Toll receptor to which it binds. Subsequent triggering of signals via the adaptor proteins 
MyD88, Tube, and Pelle leads to the phosphorylation and degradation of the Cactus protein, an inhibitor of Rel1. Finally, the degradation 
of the Cactus protein translocates Rel1 to the nucleus and activates the Toll pathway to regulate gene transcription. In the IMD pathway, 
pathogens bind to PGRP-LC and PGRP-LE ligands and trigger signalling by various cysteoaspartases and kinases. One branch triggers the JNK 
signalling pathway, while the other triggers signals via IMD, FADD, and Dredd, which mediate phosphorylation, as well as the cleavage of Rel2. 
Caspar proteins act as negative regulators of the IMD pathway. Subsequent translocation of Rel2 to the nucleus activates the IMD pathway 
to regulate gene transcription. The JAK-STAT pathway is triggered by the binding of Unpaired (Upd) to the receptor protein Dome, which 
activates the receptor-associated Hop Janus kinase. Activated Hop kinases phosphorylate each other and subsequently recruit phosphorylated 
STAT transcription factors and form dimers. Phosphorylated STAT dimers are translocated to the nucleus to activate JAK-STAT-regulated 
transcription. RNAi pathways include the siRNA pathway, miRNA pathway, and piRNA pathway. In the siRNA pathway, exogenous dsRNA 
is recognised by the RNA-binding structural domain of Dicer2 and is sheared into small dsRNA of 21–28 nt. The Ago2 protein leads to the silencing 
of complementary transcripts in the cell by degrading or inhibiting the translation of sRNAs by binding to them, and R2D2 is involved 
in the delivery of the siRNA guide strand from Dicer2 to Ago2. In the miRNA pathway, pri-miRNAs are produced in the nucleus using the genome 
and processed by Drosha and Pasha proteins to be converted into pre-miRNAs. Pre-miRNA is translocated to the cytoplasm via export protein 5, 
where it is further processed by the Dicer1 and Loqs complexes to form miRNA-miRNA duplexes, followed by the formation of guide RNAs via Ago1 
and Ago2, leading to degradation of the target mRNAs and transcriptional repression through the RISC complexes (composed of Ago2 or Ago1, 
VIG, TSN, Rp, C3PO, and other unknown proteins). In the piRNA pathway, after viRNA enters the host cell, it binds to unknown PIWI proteins (PIWI 
1–7) and directly enters the ping-pong cycle to bind to the complementary antisense RNA of Piwi5 for shearing and methylation. The antisense 
RNA is then released to bind to an unknown PIWI protein. The processed positive-sense RNA then binds to Ago3 to form a long-stranded antisense 
piRNA precursor, and the antisense piRNA precursor is sheared and methylated to form an antisense piRNA release, which binds to Piwi5 to start 
another round of the ping-pong cycle. The other viRNA undergoes reverse transcription and replication and then enters the host cell nucleus 
to integrate into the genome, where it is subsequently transcribed and translocated into the cytoplasm to enter the ping-pong cycle
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intensity of P. berghei infection [100]. Although both 
the Toll and Imd pathways are involved in the immune 
response to P. berghei, the immune response to P. falci-
parum is mainly controlled through the Imd pathway. 
Caspar proteins are negative regulators of Rel2, similar 
to the function of Cactus for Rel1. Several studies have 
shown that silencing Caspar may enhance the immune 
response to Plasmodium [102]. In addition, overex-
pression of Rel2 rendered A. gambiae, A. stephensi, 
and Anopheles albimanus completely resistant to P. 
falciparum [101].

Related studies have shown that some Imd pathway-
associated proteins and effectors can promote DENV 
and SINV infection [12, 93]. However, the transient 
activation of the Imd pathway through RNAi-mediated 
Caspar silencing did not affect the DENV titre in the 
midgut of mosquitoes [91]. Furthermore, in experi-
ments where SFV infected Ae. albopictus cells, the 
addition of heat-inactivated gram-negative bacteria 
(activating both the Imd and JAK-STAT pathways) 
prior to infection resulted in a reduction in SFV load 
[105]. Another study showed that disruption of the 
Imd pathway in DENV-tolerant strains of Ae. aegypti 

resulted in a decrease in midgut DENV titres [106], but 
DENV titres were unchanged in susceptible strains, 
suggesting that the Imd pathway may be needed for 
defence against DENV but that in susceptible strains 
the pathway may already be operating at maximum 
load.

JAK/STAT signalling pathway
The JAK/STAT pathway, a major signalling pathway 
induced by interferon, is one of the less studied immune 
pathways in mosquitoes. In A. gambiae, this pathway 
is regulated by two transcription factors, STAT-A and 
STAT-B. STAT-B regulates the transcription of STAT-
A, and bacterial infection leads to the translocation of 
STAT to the nucleus [107]. Whereas only one type of 
STAT is present in Ae. aegypti, the JAK/STAT pathway 
plays an important role in the immune response against 
DENV infection in Ae. aegypti. DENV replication in 
the mosquito midgut was significantly increased when 
the pathway was inhibited by RNAi-mediated silencing 
of transmembrane proteins (Dome receptors) or JAK 
immediate homologues (Hop proteins). In contrast, viral 
replication was inhibited when an inhibitor (negative 

Table 1  Studies on mosquito immune signalling pathways

Immune signalling pathways Mosquito/cell line Pathogen Key genes/effectors References

Toll pathways Anopheles gambiae Plasmodium berghei Toll, Rel1, Cactus, LRIM1, Tep1 [87]

Aedes aegypti Plasmodium gallinaceum, fungi, 
DENV, SINV, WNV

RUNX4, AaREL1, Spz1A, Serpin-
27A, AMPs, Dif, Späetzle 5

[88–92, 94, 95, 97]

IMD pathways Anopheles gambiae Bacterium, Plasmodium berghei, P. 
falciparum

Caspar, Rel2, AMP, cecropin 1, 
TEP1, APL1, LRIM1

[98–100]

Anopheles stephensi Plasmodium falciparum Rel2 [99, 102]

Anopheles albimanus Plasmodium falciparum Rel2 [99]

Aedes aegypti DENV, SINV Caspar, Rel2 [12, 92, 103, 105]

Aedes albopictus U4.4 cell SFV – [104]

JAK-STAT pathways Anopheles gambiae Bacterium STAT-A, STAT-B [106]

Aedes aegypti DENV STAT, Dome, Hop, PIAS [107]

Anopheles aquasalis Plasmodium vivax STAT, PIAS [108]

siRNA pathways Anopheles gambiae 4a-2s4 cell FHV, NoV Ago2 [116]

Aedes aegypti YFV, DENV2, SINV Dicer2, R2D2, Ago2 [117–119]

Anopheles gambiae ONNV Ago2 [121]

miRNA pathways Anopheles gambiae Plasmodium falciparum aga-miR-305 [124]

Aedes aegypti ZIKV, DENV – [125, 126]

Aedes aegypti Aag2 cell WNV KUN-miR-1, GATA4 [129]

Aedes albopictus C6/36 cell DENV, WNV DENV-vsRNA-5, Aae-miR-
2940-5p, aal-miR-4728-5p, 
miR-1767, miR-276-3p, miR-4448, 
KUN-miR-1, GATA4

[127–130, 132]

Aedes albopictus DENV2 miR-252 [131]

piRNA pathways Aedes aegypti CHIKV vpiRNA [137]

Aedes albopictus CHIKV vpiRNA [137]

Aedes aegypti Aag2 cell SINV, SFV Piwi5, Ago3, vpiRNA, Piwi4 [135, 139, 141]
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regulator PIAS) of activated STAT in the pathway was 
silenced [108]. Another study showed that the JAK/STAT 
pathway is involved in the immune response against Plas-
modium intermedius infection in A. aquasalis [109] and 
found that the transcript levels of STAT and PIAS were 
elevated 24 and 36 h after Plasmodium infection. In addi-
tion, in uninfected Plasmodium mosquitoes, STAT and 
PIAS are expressed mainly in the fat body. After infec-
tion, they are expressed in other tissues, and silencing 
STAT increases the number of oocysts in the midgut.

RNAi pathway
RNAi is a highly conserved, sequence-specific mecha-
nism of gene silencing at the posttranscription level that 
is primarily involved in the antiviral immune response of 
mosquitoes. RNAi is a process by which double-stranded 
RNA (dsRNA) induces small RNA (sRNA) molecules 
and thus efficiently and specifically degrades homolo-
gous mRNA. The RNAi pathway mainly produces sRNA 
molecules with different characteristics; endogenous 
small interfering RNAs (siRNAs, 18–24 nt), microRNAs 
(miRNAs, 18–24 nt), and PIWI protein-interacting RNAs 
(piRNAs, 24–30 nt) are produced, with siRNAs being the 
main molecules in the antiviral response [26, 110, 111]. In 
addition to the small molecules mentioned above, exog-
enous siRNAs of viral origin may also trigger antiviral 
responses. These sRNAs form the RNA-induced silenc-
ing complex (RISC) by binding to protein molecules such 
as AGO, TRBP, and PACT, which recognise the target 
RNA through a specific family of Argonaute (Ago) pro-
teins, leading to gene silencing.

siRNA
The siRNA pathway is mainly triggered by Dicer2, R2D2, 
and Ago2 and can be classified as exogenous and endoge-
nous. Exogenous siRNAs are involved in antiviral immu-
nity by processing exogenous RNAs derived from viruses 
(or viRNAs), and endogenous siRNAs are involved in 
regulating cellular processes by binding endogenously 
encoded dsRNAs [112]. Exogenous dsRNA is recognised 
by the RNA-binding structural domain of Dicer, which 
has ribonucleic acid endonuclease activity (RNase III) 
and is sheared into small dsRNAs of 21–28  nt. Biosyn-
thesis of endogenous siRNAs primarily involves RNA 
polymerase IV and RNA polymerase V [113]. Dicer is a 
key element in the biosynthesis of most sRNA molecules, 
and its main role is to shear dsRNA into sRNAs [114]. 
The Ago family plays a central role in the RNAi pathway 
by binding to sRNAs and thereby degrading or inhibiting 
their translation, leading to silencing of the complemen-
tary transcripts in cells. R2D2 is involved in the delivery 
of the siRNA guide strand from Dicer2 to Ago2; thereby, 

R2D2 acts as a bridge to the RNAi pathway [115]. The 
antiviral effect of siRNA was first demonstrated in A. 
gambiae cells, and Ago2 was found to be involved in 
inhibiting viral replication [116]. Since then, several stud-
ies have found that the siRNA pathway inhibits the rep-
lication of yellow fever virus (YFV) [117], DENV2 [118] 
and SINV [119, 120], and the level of viral replication is 
significantly increased upon the knockdown or silencing 
of siRNA pathway-related genes [121].

miRNA
miRNAs are small endogenous noncoding RNAs that 
regulate gene expression by degrading mRNAs or termi-
nating transcription by binding to the noncoding regions 
at the 3′ ends [122]. The mechanism of miRNAs is simi-
lar to that of siRNAs, with the main difference being their 
location in the cell and the effector proteins involved 
[123]. siRNAs occur mainly in the cytoplasm, whereas 
the formation of miRNA precursors (pre-miRNAs) is 
performed in the nucleus, and they are later transported 
to the cytoplasm for action. miRNAs are involved in 
a variety of cellular functions, ranging from develop-
ment to participation in anti-infection immune mecha-
nisms. miRNAs regulate mosquito immunity mainly 
by controlling the expression of immune-related genes 
and genes subject to posttranslational modifications or 
by directly binding to the genome of pathogens. Studies 
have shown that aga-miR-305 increases the susceptibil-
ity of A. gambiae to P. falciparum, which replicates itself 
by utilising miRNAs from reservoirs in host cells [124]. 
Infection with mosquito-borne viruses such as ZIKV 
[125], DENV [126, 127], and WNV can similarly trigger 
miRNA responses, leading to the differential expression 
of multiple miRNAs. Among them, the study confirmed 
that downregulation of Aae-miR-2940-5p expression 
inhibited WNV replication [128]; KUN-miR-1 promoted 
WNV proliferation in Ae. aegypti and Ae. albopictus cells 
by upregulating the expression of the transcription factor 
GATA4 [129]; aal-miR-4728-5p enhanced DENV2 repli-
cation after overexpression in Ae. albopictus C6/36 cells 
[130]; miR-252 inhibited DENV2 infection in Ae. albop-
ictus by regulating E protein expression [131]. miR-1767 
and miR-276-3p enhanced DENV2 replication in C6/36 
cells, whereas miR-4448 inhibited DENV2 replication 
[132].

piRNA
The piRNA pathway is poorly understood, but it has 
regulatory roles in germline maintenance and develop-
ment [133], the protection of transposons [134], and the 
regulation of viral infections [135]. Unlike siRNAs and 
miRNAs, piRNAs are dependent on PIWI subfamily pro-
teins, mainly Piwi, Aub, and Ago3, which together form 
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the piRNA-induced silencing complex (piRISC) [136]. 
piRNAs are mainly derived from repetitive sequence ele-
ments or piRNA clusters, but viral genomes are another 
source of piRNAs (vpiRNAs) [137, 138]. vpiRNA was 
detected in Ae. aegypti and Ae. albopictus infected with 
chikungunya virus (CHIKV) [137] as well as in SINV-
infected Ae. aegypti cells [135]. In siRNA-deficient mos-
quito cells, cellular lesions were found to be aggravated 
by the inhibition of vpiRNA expression, suggesting that 
piRNAs exert their antiviral effects in the presence of 
defects in the siRNA pathway, indicating that piRNA 
is complementary to the RNAi pathway in the immune 
response [137]. In addition, another study showed that 
in Ae. aegypti, a noncanonical PIWI protein involved 
in the antiviral response, Piwi4 knockdown resulted in 
increased SFV replication in Ae. aegypti Aag2 cells [139]. 
piRNAs are also involved in host resistance to specific 
viruses. Endogenous bornavirus-like nucleoprotein ele-
ments were found to be reverse transcribed and inte-
grated into primate and rodent genomes, resulting in 
resistance to bornavirus [140]. In addition, the piRNA 
pathway may play a role in preventing the transmission 
of vertically transmitted arboviruses through germ cells 
[141].

Immune effects
AMPs
AMPs are small molecule proteins with in vitro antimi-
crobial activity that are mainly produced by the Toll and 
IMD signalling pathways. These two pathways regulate 
the expression of AMPs by activating different transcrip-
tion factors, which are increased in the fat body when 
mosquitoes are infected with pathogens [91, 142]. DEFs, 
CECs, and gambicins (GAMs) are the three main AMP 
families in mosquitoes. CECs and GAMs primarily target 
gram-positive bacteria, and DEF primarily targets gram-
negative bacteria. DEF has antimicrobial activity in vitro, 
but its role as an essential component of the mosquito 
immune response is still unclear. In A. gambiae, knock-
down of DEF reduced the survival of S. aureus-infected 
mosquitoes but the mosquitoes did not show resistance 
to malaria [143]. Sequence analysis of Ae. aegypti exam-
ining 17 AMPs found that the mRNA expression of 7 
AMPs was significantly increased after DENV2 infection 
[144]. In addition, there was no effect on the survival of 
bacteria-infected mosquitoes after silencing DEF in Ae. 
aegypti [145, 146]. DEF and CEC inhibit DENV repli-
cation in Ae. aegypti infected with Wolbachia [96]. The 
mechanism of the antimicrobial response to CECs is 
not known, but ectopic expression of CECs can limit P. 
berghei infection in A. gambiae [147]. Escherichia coli and 
Streptococcus mucin also stimulate CEC-A, D, E, F, and 
N expression in Aag2 cells. GAMs exhibited antimalarial 

activity in the midgut and antimicrobial activity in the 
blood lumen, and the silencing of GAMs resulted in 
increased P. berghei loads in A. gambiae [148]. Further-
more, the silencing of key factors of the JAK-STAT path-
way in Aag2 cells leads to reduced GAM activity against 
bacterial infections, suggesting that immune signalling 
plays a central role in AMP production [149].

NO and ROS
NO and ROS are two important effector components 
of the mosquito immune response. NO is a multifunc-
tional free radical that is produced during the oxidation 
of l-arginine to l-guanine and catalysed by nitric oxide 
synthase (NOS). In the midgut, Plasmodium glyco-
sylphosphatidylinositol and Plasmodium-derived hae-
magglutinin obtained through infection of the blood 
meal induce NOS transcription via the STAT pathway, 
and the resulting NO kills ookinetes by cleavage. NOS 
is upregulated in the haemocoel after E. coli and Micro-
coccus luteus infections, and NO is necessary for bacte-
rial killing and mosquito survival during E. coli infection 
[150]. ROS are involved in the clearance of ookinetes 
from the midgut and bacteria from the haemocoel, and 
although the exact mechanism of action on bacteria is 
unknown, ROS kill Plasmodium via the cleavage and 
melanisation pathways [151–153]. Oral antioxidants also 
reduced melanisation [151]. The L3-5 strain of A. gam-
biae (P. berghei resistant) lives in a state of chronic oxida-
tive stress that promotes the melanisation of ookinetes in 
the midgut epithelium [152]. In contrast, G3-susceptible 
strains kill ookinetes through an infection-induced oxi-
dative stress cleavage mechanism that can be maintained 
by the inhibition of catalase [153]. The silencing of cata-
lase promotes Plasmodium infection in the midgut and 
reduces the bacterial load. In addition, silencing of the 
dioxygenase DuoX reduced ROS levels and promoted the 
proliferation of gut microbes [154].

Melanisation
Melanisation is another important immune response 
developed by mosquitoes against invading pathogens 
and is a complex mechanism. The major components 
involved in melanisation include PO, SP, SRPN, and ser-
ine protease hairpin domains (CLIPs). Melanisation ini-
tiates the sequential cascade of SPs via PAMPs, which 
catalyse the hydrolysis of phenol oxidase proteins (pro-
POs) to active PO. PO is a key enzyme in melanisation, 
where tyrosine is hydroxylated to DOPA by PO; DOPA 
is further oxidised to dopaquinone, and in the pres-
ence of thiols, dopaquinone forms a cysteine and glu-
tathione coupling to form yellow/red pheomelanin, or 
in the absence of thiols, dopaquinone is spontaneously 
converted to dopachrome, which is further converted to 
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eumelanin in brown/black polymers [155], which encap-
sulate and destroy invading pathogens. SPs and POs are 
involved in melanisation, and SRPN acts as an inhibitor 
of serine protease to tightly control the SP cascade [156]. 
SRPN regulates the activation of proPOs and may acti-
vate the Toll pathway to cause Plasmodium lysis [157]. 
At least three SRPNs were found to be involved in the 
anti-Plasmodium innate immune response in A. gam-
biae, with Ag-SRPN6 primarily inhibiting Plasmodium 
proliferation and transmission [158]. CLIPs are similarly 
involved in regulating the melanisation of Plasmodium. 
SPCLIP1, an arthropod-specific noncatalytic serine pro-
tease, is involved in TEP1 accumulation on the surface of 
invading pathogens to regulate the complement pathway 
in mosquitoes, thereby inducing a peak in the Plasmo-
dium and bacterial melanisation cascade [159]. Another 
study found that SRPN7 and CLIP2 play a synergistic 
role in the cascade signalling of mosquitoes during Plas-
modium infection, with SRPN7 acting as an inhibitor 
and CLIP2 acting as a facilitator [160]. However, neither 
SRPN7 nor CLIP2 were transcriptionally regulated fol-
lowing infection with P. berghei. CTLs also inhibit the 
melanisation of mosquitoes against P. berghei, and the 
silencing of CTL4 and CTLMA2 causes LRIM1-depend-
ent ookinete melanisation [80]. The silencing of the key 
regulators of melanisation TEP1 and CLIPA8 completely 
prevented mycelial melanisation but not melanisation in 
conidia and shoot tubes and resulted in more rapid pro-
liferation of the fungus and greater susceptibility to Coc-
cidioides albicans. In addition, amino acid metabolism 
has an important role in melanisation, and tyrosine syn-
thesis is reduced following the silencing of phenylalanine 
carboxylase (PAH) of the amino acid metabolic pathway, 
thus altering melanisation in response to P. berghei. Car-
bidopa, an inhibitor of DOPA decarboxylase, similarly 
affects egg melanisation [161]. Intermediates produced 
during hydrolysis of ProPOs inactivate SFV; conversely, 
SFV can activate the melanisation cascade of POs to 
inhibit virus transmission [162].

Apoptosis
Apoptosis leads to programmed cell death (PCD) and is 
essential for maintaining homeostasis because it removes 
damaged and infected cells. Apoptosis inhibits viral repli-
cation as an intrinsic response to viral infection in verte-
brates [163, 164]. Although pathogen infection in insects 
often leads to non-pathogenic infections, there is growing 
evidence that apoptosis has an antiviral effects in insects 
[165]. Apoptosis in mosquitoes was found to be involved 
in the regulation of pathogen load. An apoptosis inhibi-
tor antagonist gene, michelob-x (mx), was first identified 
in A. gambiae, which is similar to the reaper-like apop-
tosis inhibitor antagonist gene in Drosophila and may 

be involved in regulating the pro-apoptotic response to 
viral infection [166]. Aedes aegypti (CuniNPV-refractory) 
larvae infected with CuniNPV rapidly generated mx in 
the midgut and induced the rapid apoptosis of infected 
cells at 4–6 h, whereas rapidly induced apoptosis was not 
detected in the larvae of Cx. quinquefasciatus (CuniNPV-
susceptible). This finding suggests that apoptosis plays 
an important role in mosquito resistance to viral infec-
tion [167]. This phenomenon has been demonstrated 
in WNV-infected Cx. quinquefasciatus [168, 169] and 
DENV-infected resistant and susceptible Ae. aegypti 
[165]. There are two important factors in the mosquito 
apoptosis pathway, Aeiap1 and Aedronc. Aedronc is an 
RNAi-mediated primary apoptotic cysteinyl asparagi-
nase, and the silencing of Aedronc was found to increase 
the prevalence of infection in resistant Ae. aegypti mos-
quitoes [170]. Aeiap1, an inhibitor of apoptosis, activates 
apoptosis by silencing IAP, leading to increased SINV 
titres in the midgut and viral spread to other sites in Ae. 
aegypti; meanwhile, silencing Aedronc has the opposite 
result [171]. These results are contrary to the hypoth-
esis that apoptosis plays a role in the mosquito antiviral 
immune response. Apoptosis may limit viral infectivity 
by disrupting the physical barriers of the cell, but when 
apoptosis is artificially induced, both viral infectivity and 
transmission are enhanced.

Autophagy
Autophagy is a fundamental cellular process involved in 
the maintenance of cellular homeostasis in  situations of 
stress and nutrient deprivation. Autophagy can activate 
or modulate the immune response and directly eliminate 
intracellular microorganisms [172]. Autophagy-related 
gene 5 (ATG5) in the midgut of DENV2-susceptible Ae. 
aegypti was transcriptionally elevated upon infection 
with DENV2, in contrast to resistant strains, and this 
elevation was associated with increased expression of 
apoptosis-related genes [173]. When these genes were 
silenced, a concomitant increase in DENV2 load was 
accompanied by accumulation of Atg8-PE, a marker of 
autophagy induction and progression [173]; furthermore, 
apoptosis-related genes are also involved in regulating 
autophagy.

Phagocytosis
Phagocytosis is a conservative immune process that has 
evolved to effectively neutralise or remove microorgan-
isms. By recognizing that particles or microorganisms 
are excited and form phagosomes after being engulfed 
by phagocytes, the phagosome fuses with the lysosome, 
and the microorganism is digested by hydrolytic enzymes 
within the lysosome. In mosquitoes, the granulocyte sub-
population of haemocytes isolates and kills bacteria by 
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phagocytosis [174, 175], approximately 95% of circulating 
haemocytes are phagocytic, and a single haemocyte can 
phagocytose > 1000 bacteria 24  h post infection [176]. 
The main phagocytosis regulators in mosquitoes are 
PRRs, transmembrane receptors, and intracellular sig-
nalling proteins. TEP1, TEP3, and TEP4 are involved in 
phagocytosis of gram-positive and -negative bacteria in 
the haemocoel [67, 177]. TEP1 downregulates bacterial 
prevalence through thioester-mediated binding, which in 
turn initiates phagocytosis, and the mechanism of action 
of TEP3 and TEP4 is unknown [177]. In addition, LRIM1 
is also involved in phagocytosis, and its exact mechanism 
has not been elucidated, but it has been shown that the 
antimicrobial activity of TEP1 in the midgut depends on 
the complexation of TEP1 with LRIM1 in the haemocoel 
[68]. Knockdown of AgDSCAM, a highly variable immu-
noglobulin structural domain containing the receptor 
for A. gambiae, promoted bacterial proliferation in the 
haemocoel and reduced mosquito survival [77]; in addi-
tion, AgDSCAM recognises bacteria to initiate phago-
cytosis. Transmembrane receptors trigger phagocytosis 
by directly recognising pathogens or pathogens regu-
lated by haemocyte proteins, including PGRPs, integrins 
(BINT2), and low-density lipoprotein receptor-related 
protein (LRP1) [177, 178]. Intracellular CED proteins can 
similarly trigger bacterial internalisation. In A. gambiae, 
knockdown of CED2, CED5, or CED6 reduced phago-
cytic efficiency to 80% [177]. Analysis showed that TEP1-, 
TEP3-, LRIM1-, and LRP1-mediated phagocytosis occurs 
through the CED6 pathway, and TEP4- and BINT2-
mediated phagocytosis occurs through the CED2/CED5 
pathway. Another study on A. gambiae found that cyto-
plasmic actin can act as a pathogen recognition factor by 
interacting with specific extracellular immune factors, 
which in turn bind to the bacterial surface to mediate 
phagocytosis [179].

Immune priming
In recent years, researchers have discovered that the 
mosquito’s innate immune response can induce an 
enhanced immunity when it encounters reinfection, a 
phenomenon known as "immune priming" (also known 
as trained immunity). The innate immune memory of 
A. gambiae for Plasmodium infection is associated with 
haemocyte differentiation [18], mediated by the sys-
temic release of haemocyte differentiation factor (HDF). 
Plasmodium infection mediates immune initiation in A. 
gambiae by inducing the release of lipoxin/lipocalin com-
plex, which is associated with a sustained increase in the 
expression of a lipocalin lipid carrier called Evokin, which 
promotes haematopoietic differentiation [180]. Another 
study similarly found that prostaglandin E2 (PGE2) 

released from the midgut of A. gambiae attracts haemo-
cytes to the midgut surface and enhances their patrolling 
activity, resulting in a more effective immune response 
to re-infection in A. gambiae [181]. Double peroxidase 
(DBLOX) is essential for HDF synthesis, and histone 
acetyltransferase AgTip60 is essential for oenocyte num-
ber, HDF synthesis, and immune priming [182].

It has been previously shown that the response of Ae. 
aegypti to bacterial reinfection is predominantly non-
specific immune priming [183]. However, another study 
found that A. gambiae fed with Serratia fonticola S1 and 
Enterobacter sp. Ag1 sugar meal had a higher 24-h sur-
vival rate after re-infection and that this immune prim-
ing was specific, suggesting that the previous bacterial 
sugar meal enhanced the subsequent antibacterial immu-
nity [184]. Bacterial exposure in the larval stage of Ae. 
aegypti was found to increase the survival of both male 
and female adult mosquitoes. However, there was sexual 
immune dimorphism, with higher PO activity in male 
mosquitoes and higher NO production, higher antibac-
terial activity, and longer duration in female mosquitoes 
[185]. Using the Ae. aegypti Aag2 cell line as a model, 
the investigators found that bacterial-induced immune 
responses inhibited RVFV replication, and that RVFV 
infection markedly enhanced subsequent bacterial-stim-
ulated immune responses. RVFV infection affected gene 
expression of PRRs, which may be involved in immune 
priming [186].

Mosquitoes are also involved in immune priming dur-
ing interactions with the gut microorganisms, including 
Wolbachia [187, 188]. It is a major way to increase the 
survival of reinfected mosquitoes and to limit Plasmo-
dium invasion. Studies have also shown that immune 
priming to viruses [189] and Wolbachia [190, 191] 
sometimes enhances immunity but also suppresses 
the immune response. The effect of transgenerational 
immune priming (TGIP) on offspring immune response 
rates is also being further investigated. Aedes aegypti 
can pass on antiviral immune memory to their off-
spring, and the memory persists for several generations. 
CHIKV-infected Ae. aegypti offspring show lower viral 
loads when infected, and TGIP is viral RNA-dependent 
and sequence-specific but RNAi-independent [192]. In 
female offspring of Ae. aegypti infected with DV, tran-
scripts of the siRNA pathway are reduced and immune 
priming decreases viral load [193].

Symbiotic bacteria and anti‑pathogenic effects
Influence of gut microorganisms on immunity
As an important site for pathogen colonisation and 
determining the outcome of infection, the gut possesses 
complex microbial populations that influence multiple 
aspects of mosquito nutrition, reproduction, metabolism, 
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immunity, and vectorial competence. Mosquitoes acquire 
viruses by sucking blood, which then infects intestinal 
epithelial cells and spreads throughout the body to vari-
ous organs and tissues via the haemocoel. Gut microbes 
play a role in mosquito immune regulation by initiat-
ing host immune surveillance mechanisms and secret-
ing metabolites  (Fig. 3) [194, 195]. The mosquito innate 
immune system mediates the interaction of midgut 
microbes with DENV infection, and Proteus sp. prsp_P 
upregulates AMP expression and increases mosquito 
resistance to DENV infection [196]. Microbes trigger 
basal immune and antimicrobial responses against DENV 
infection, and the immune response triggered by DENV 
infection also affects midgut microbes. Another study 
found that in A. gambiae, gut microbes reduce infection 
rates and Plasmodium counts by producing antipara-
sitic effectors. Chromobacterium Csp_P in the midgut 
reduced the survival of larvae and adults and suppressed 
malaria and DENV infection. Additionally, Csp_P medi-
ates in vitro anti-Plasmodium and anti-DENV activity by 
producing bioactive factors with transmission blocking 
and therapeutic potential [197]. In Ae. aegypti, Talaro-
myces alter mosquito physiology by modulating diges-
tive enzymes and trypsin activity to facilitate pathogen 
infection [198]. Serratia marcescens is a key commensal 

bacterium that plays a role in the efficient acquisition of 
arboviruses. Serratia marcescens facilitates arbovirus 
infection by secreting the SmEnhancin protein, which 
digests membrane-bound mucin in the gut epithelium, 
thereby enhancing virus transmission [199]. The findings 
suggest that tripartite interactions among mosquitoes, 
gut microbes, and pathogens offer new possibilities for 
the control of mosquito-borne infectious diseases.

Wolbachia
Currently, the most widely used microbial control strat-
egy for insect-borne viruses is Wolbachia. Wolbachia is 
a maternally inherited intracellular symbiotic bacterium 
predicted to infect > 60% of insects [200]. Wolbachia is 
programmed to control insects by utilising the following 
two key processes of host biology: cytoplasmic incom-
patibility (CI) and pathogen blocking (PB) [201]. CI is 
a reproductive manipulation that manifests as fewer 
eggs being produced or the failure to hatch after mating 
between males infected with Wolbachia and uninfected 
females, the compatibility of females carrying Wolbachia 
with either infected or uninfected males for successful 
reproduction, and the possibility of CI between mosqui-
toes carrying different strains of Wolbachia, referred to 
as bidirectional CI. In addition, some Wolbachia trans 

Fig. 3  Interactions among mosquitoes, gut microbes, and pathogens. Red-, purple-, green-, and blue-coloured rods with hyphae represent various 
gut microbes. ① Gut microbes directly inhibit viruses; ② gut microbes can inhibit viruses by stimulating basal immunity; ③ gut microbes can 
potentiate viruses; ④ gut microbes, such as Wolbachia, can stimulate immunity through the production of ROS; ⑤ ROS can also be coproduced 
by a mosquito host and microbes and inhibit bacteria and pathogens; ⑥ intracellular microbes can modulate the expression of host miRNAs; ⑦ 
arboviruses can either inhibit or promote gut microbes; ⑧ interactions with gut microbes can affect the microbes themselves
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infections also cause PB; Wolbachia inhibits pathogen 
infection, replication, and the transmission of key patho-
gens. Mosquito control interventions utilising Wolbachia 
generally follow two approaches, namely, population 
suppression and population substitution [202]. Popula-
tion suppression targets the two main DENV vectors, Ae. 
aegypti (infection by the wAlbB strain) and Ae. albopictus 
(triple infection by the wAlbA, wAlbB and wPip strains). 
By releasing large numbers of Wolbachia-infected male 
mosquitoes to mate with wild females, CI then leads 
to a dramatic decline in the size of the target mosquito 
population by reducing female fecundity [203–206], with 
suppression rates of local mosquito populations rang-
ing from 78% to 95%. The Wolbachia wMelPop-CLA 
strain introduced from D. melanogaster into Ae. aegypti 
reduced the lifespan of female mosquitoes by approxi-
mately 50% compared to uninfected mosquitoes [207]. 
Population substitution is the use of CI to displace Wol-
bachia-infected populations using mosquito populations 
that transmit the target virus; therefore, PB limits arbo-
virus transmission. Studies have shown that population 
substitution is generally effective and that Wolbachia can 
spread rapidly at high frequencies and remain stable over 
time in target populations [208–210]. Successful infec-
tion with Wolbachia usually corresponds to a signifi-
cant reduction in DEF transmission in DENV-endemic 
areas [209–212]. In addition, Wolbachia increases mos-
quito resistance to DENV, CHIKV, YFV, and Plasmo-
dium infection [213–216]. The Wolbachia wAlbB strain 
from Ae. albopictus similarly showed resistance to DENV 
after midgut colonisation in Ae. aegypti [217], and gene 
expression analysis showed that wAlbB induced ROS 
production, which in turn induced activation of the Toll 
pathway [96].

Conclusions
Mosquitoes, as vectors of many infectious diseases, 
have received extensive attention worldwide. In recent 
years, with the development of RNAi and transgenic and 
CRISPR/Cas9 technologies, there has been an increasing 
number of studies on mosquito immune mechanisms. 
This article describes the innate immune mechanisms 
of mosquitoes in response to pathogens, outlining the 
physical barriers of the mosquito salivary glands, haemo-
coel, midgut, and the physiological barriers of MIB, 
MEB, SGIB, and SGEB, which activate the Toll, Imd, and 
JAK-STAT immune signalling pathways through the rec-
ognition of pathogens by PRRs and PAMPs, thereby trig-
gering cellular and humoral immune responses such as 
AMPs, melanisation, ROS and NO, apoptosis, autophagy, 
phagocytosis, and other cellular and humoral immune 
responses. Finally, the mechanisms and related studies of 
mosquito immune priming as well as symbiotic bacteria 

against pathogen infection are described. The study of 
the molecular mechanisms of mosquito innate immune 
responses provides new ideas for mosquito density con-
trol and the development of mosquito-borne disease 
control strategies. However, the mechanism of mosquito 
innate immunity still has many unknowns and needs to 
be further studied and explored; for example the lacks of 
knowledge about the molecular and biochemical mecha-
nisms underlying the physiological barriers of MIB, MEB, 
SGIB, and SGEB; the differentiated mechanisms of innate 
immunity among mosquito species; the differences in 
immune mechanisms between larvae and adults; the 
mechanisms of haemocyte development and differentia-
tion; the complex regulatory mechanisms in response to 
different pathogens; the exact mechanisms of immune-
associated genes and effectors involved in immune regu-
lation; and the search for new mechanisms of immunity, 
immune genes, and immune effectors all require fur-
ther investigation. The development of gene editing 
and genomics and biochemical analysis techniques will 
further promote the study of mosquito immune mech-
anisms, which will provide a basis for improving mos-
quito-borne disease research.
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